Skip to main content
Log in

Transient chaos in the Sitnikov problem

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

In this paper, we show the important role of chaotic transients in Celestial Mechanics through the Sitnikov problem. We compare the two kinds of chaos, permanent and transient, and provide the chaotic saddle of the Sitnikov problem giving also some important quantitative properties of this fractal set. Additionally, we present a link between the stickiness effect of tori and chaotic scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfaro J., Chiralt C.: Invariant rotational curves in Sitnikov’s problem. Celest. Mech. Dyn. Astron. 55, 351–367 (1993)

    Article  MATH  ADS  Google Scholar 

  • Alt H., Gräf H.-D., Harney H.L., Hofferbert R., Rehfeld H., Richter A., Schardt P.: Decay of classical chaotic systems: the case of the Bunimovich stadium. Phys. Rev. E 53, 2217–2222 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  • Altmann G., Tél T.: Poincaré recurrences from the perspective of transient chaos. Phys. Rev. Lett. 100, id.174101 (2008)

    ADS  Google Scholar 

  • Benet L., Trautmann D., Seligman T.H.: Chaotic scattering in the restricted three-body problem I. The Copenhagen problem. Celest. Mech. Dyn. Astron. 66, 203–228 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  • Benet L., Trautmann T.H., Seligman D.: Chaotic scattering in the restricted three-body problem II. Small mass parameters. Celest. Mech. Dyn. Astron. 71, 167–189 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  • Benet L., Merlo O.: Phase-space volume of regions of trapped motion: multiple ring components and arcs. Celest. Mech. Dyn. Astron. 103, 209–225 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Bleher S., Grebogi C., Ott E.: Bifurcation to chaotic scattering. Physica D 46, 87–121 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Contopoulos G.: Order and chaos in dynamical astronomy, pp. 237–251. Springer, Berlin, Heidelberg, New York (2002)

    MATH  Google Scholar 

  • Contopoulos G., Voglis N., Efthymiopoulos C., Froeschlé C., Gonczi R., Lega E., Dvorak R., Lohinger E.: Transition spectra of dynamical systems. Celest. Mech. Dyn. Astron. 67, 293–317 (1997)

    Article  MATH  ADS  Google Scholar 

  • Contopoulos G., Harsoula N., Voglis N., Dvorak R.: Destruction of islands of stability. J. Phys. A: Math. Gen. 32, 5213–5232 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Contopoulos G., Efstathiou K.: Escapes and recurrence in a simple hamiltonian system. Celest. Mech. Dyn. Astron. 88, 163–183 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Contopoulos G., Patsis A.: Outer dynamics and escapes in barred galaxies. Mon. Not. R. Astron. Soc. 369, 1039–1054 (2006)

    Article  ADS  Google Scholar 

  • Cristadoro G., Ketzmerick R.: Universality of algebraic decays in Hamiltonian systems. Phys. Rev. Lett. 100, 184101 (2008)

    Article  ADS  Google Scholar 

  • Dvorak R., Contopoulos G., Efthymiopoulos C., Voglis N.: ‘Stickiness’ in mappings and dynamical systems. Planet. Space Sci. 46, 1567–1578 (1998)

    Article  ADS  Google Scholar 

  • Dvorak R.: Numerical results to the Sitnikov-problem. Celest. Mech. Dyn. Astron. 56, 71–80 (1993)

    Article  ADS  Google Scholar 

  • Dvorak R.: The Sitnikov problem–a complete picture of phase space. Publ. Astron. Dep. Eötvös Univ 19, 129–140 (2007)

    Google Scholar 

  • Eckhardt B.: Irregular scattering. Physica D 33, 89–98 (1988)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Efthymiopoulos C., Contopoulos G., Voglis N.: Cantori, Islands and asymptotic curves in the stickiness region. Celest. Mech. Dyn. Astron. 73, 221–230 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Faruque S.B.: Solution of the Sitnikov problem. Celest. Mech. Dyn. Astron. 87, 353–369 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • García F., Gómez G.: A note on weak stability boundaries. Celest. Mech. Dyn. Astron. 97, 87–100 (2007)

    Article  MATH  ADS  Google Scholar 

  • Grebogi C., Ott E., Yorke A.J.: Chaotic attractors in crisis. Phys. Rev. Lett. 48, 1507–1510 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  • Grebogi C., Ott E., Yorke A.J.: Crisis, sudden changes in chaotic attractors, and transient chaos. Physica D 7, 181–200 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  • Hagel J.: A new analytic approach to the Sitnikov problem. Celest. Mech. Dyn. Astron. 53, 267–292 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Hagel J., Lhotka C.: A high order perturbation analysis of the Sitnikov problem. Celest. Mech. Dyn. Astron. 93, 201–228 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Hsu G., Ott E., Grebogi C.: Strange saddles and the dimensions of their invariant manifolds. Phys. Lett. A 127, 199–204 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  • Jiménez-Lara L., Escalona-Buendía A.: Symmetries and bifurcations in the Sitnikov problem. Celest. Mech. Dyn. Astron. 79, 97–117 (2001)

    Article  MATH  ADS  Google Scholar 

  • Jung C., Tél T., Ziemniak E.: Application of scattering chaos to particle transport in a hydrodynamical flow. Chaos: An Interdisciplinary J. Nonlinear Sci. 3, 555–568 (1993)

    Article  Google Scholar 

  • Jung C., Mejia-Monasterio C., Seligman T.H.: Scattering one step from chaos. Phys. Lett. A 198, 306–314 (1995)

    Article  ADS  Google Scholar 

  • Kantz H., Grassberger P.: Repellers, semi-attractors, and long-lived chaotic transients. Physica D 17, 75–86 (1985)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Kovács T., Érdi B.: The structure of the extended phase space of the Sitnikov problem. Astron. Nachr. 328, 801–804 (2007)

    Article  MATH  ADS  Google Scholar 

  • Lai Y., Grebogi C., Blümel R., Ding M.: Algebraic decay and phase-space metamorphoses in microwave ionization of hydrogen Rydberg atoms. Phys. Rev. A 45, 8284–8287 (1992)

    Article  ADS  Google Scholar 

  • Lai Y., Grebogi C., Yorke J.A., Kan I.: How often are the chaotic saddles nonhyperbolic?. Nonlinearity 6, 779–797 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Liu J., Sun Y.-S.: On the Sitnikov problem. Celest. Mech. Dyn. Astron. 49, 285–302 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • MacKay R.S., Meiss J.D., Percival I.C.: Stochasticity and transport in hamiltonian systems. Phys. Rev. Lett. 52, 697–700 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  • MacMillan W.D.: An integrable case in the restricted problem of three bodies. Astron. J. 27, 11–13 (1911)

    Article  ADS  Google Scholar 

  • Meiss J.D., Ott E.: Markov-Tree model of intrinsic transport in hamiltonian systems. Phys. Rev. Lett. 55, 2741–2744 (1985)

    Article  ADS  Google Scholar 

  • Motter A.E, Lai Y.-C.: Dissipative chaotic scattering. Phys. Rev. E 65, 015205 (2002)

    Article  ADS  Google Scholar 

  • Ott E.: Chaos in dynamical systems 2nd Ed, pp. 192–199. Cambridge Univ Press, Cambridge (2002)

    MATH  Google Scholar 

  • Ott E., Tél T.: Chaotic scattering: an introduction. Chaos 3, 417–425 (1993)

    Article  ADS  Google Scholar 

  • Perdios E.A.: The manifolds of families of 3D periodic orbits associated to Sitnikov motions in the restricted three-body problem. Celest. Mech. Dyn. Astron. 99, 85–104 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Simó C., Vieiro A.: Resonant zones, inner and outer splittings in generic and low order resonances of area preserving maps. Nonlinearity 22, 1191–1245 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Sitnikov K.: Existence of oscillating motion for the three-body problem. Dokl. Akad. Nauk. USSR 133, 303–306 (1960)

    MathSciNet  Google Scholar 

  • Soulis P., Bountis T., Dvorak R.: Stability of motion in the Sitnikov 3-body problem. Celest. Mech. Dyn. Astron. 99, 129–148 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Soulis P., Papadakis K., Bountis T.: Periodic orbits and bifurcatiopns in the Sitnikov four-body problem. Celest. Mech. Dyn. Astron. 100, 251–266 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  • Sun Y., Zhou L., Zhou J.: The role of hyperbolic invariant sets in stickiness effects. Celest. Mech. Dyn. Astron. 92, 257–272 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Tél, T., Gruiz, M.: Chaotic dynamics. Cambridge University. Press, Cambridge, pp. 201–202, 338 (2006)

  • Wodnar K.: The original Sitnikov article–new insights. Celest. Mech. Dyn. Astron. 56, 99–101 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  • Zhou J.L., Zhou L.Y., Sun Y.S.: Hyperbolic structure and stickiness effect. Chin. Phys. Lett. 19, 1254–1256 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kovács.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovács, T., Érdi, B. Transient chaos in the Sitnikov problem. Celest Mech Dyn Astr 105, 289–304 (2009). https://doi.org/10.1007/s10569-009-9227-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-009-9227-0

Keywords

Navigation