Skip to main content

Central configurations of the five-body problem with equal masses

Abstract

In this paper we present a complete classification of the isolated central configurations of the five-body problem with equal masses. This is accomplished by using the polyhedral homotopy method to approximate all the isolated solutions of the Albouy-Chenciner equations. The existence of exact solutions, in a neighborhood of the approximated ones, is then verified using the Krawczyk method. Although the Albouy-Chenciner equations for the five-body problem are huge, it is possible to solve them in a reasonable amount of time.

This is a preview of subscription content, access via your institution.

References

  • Albouy A. (1995). Symétrie des configurations centrales de quatre corps. C. R. Acad. Sci. Paris. 320: 217–220

    MATH  MathSciNet  Google Scholar 

  • Albouy A. (1996). The symmetric central configurations of four equal masses. Contemp. Math. 198: 131–135

    MathSciNet  Google Scholar 

  • Albouy A. (2003). On a paper of Moeckel on central configurations. Reg. Chaotic Dynamics 8: 133–142

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Albouy, A.: Mutual distances in celestial mechanics, preprint (2004)

  • Albouy A. and Chenciner A. (1998). Le probléme des n corps et les distances mutuells. Invent. Math. 131: 151–184

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Albouy A., Fu Y. and Sun S. (2009). Symmetry of planar four-body convex central configurations. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 464: 1355–1365

    Article  ADS  MathSciNet  Google Scholar 

  • Bernshteín D.N. (1975). The number of roots of a system of equations. Funct. Anal. Appl. 9(3): 183–185

    Article  MATH  Google Scholar 

  • Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini: Software for Numerical Algebraic Geometry, available at http://www.nd.edu/~sommese/bertini

  • Brehm, E.: Pertikuläre Integrale des Problems der drei Körper, Dissertation, Berlin (1908)

  • Chazy J. (1918). Sur certaines trajectoires du probléme des n corps. Bull. Astron. 35: 321–389

    Google Scholar 

  • Ferrario, D.L.: Central configurations, symmetries and fixed points. e-print, math.DS/0204198 (2002)

  • Gao T., Li T.Y. and Wu M. (2005). Algorithm 846: MixedVol: a software package for mixed volume computation. ACM Trans. Math. Softw. 31(4): 555–560

    Article  MATH  MathSciNet  Google Scholar 

  • Gunji T., Kim S., Kojima M., Takeda A., Fujisawa K. and Mizutani T. (2004). PHoM—a polyhedral homotopy continuation method. Computing 73: 57–77

    Article  MATH  MathSciNet  Google Scholar 

  • Hagihara Y. (1970). Celestial Mechanics. 1st edn. MIT press, Massachusetts

    Google Scholar 

  • Hampton M. (2005). Stacked central configurations: new examples in the five-body problem. Nonlinearity 18: 2299–2304

    Article  MATH  MathSciNet  Google Scholar 

  • Hampton M. and Moeckel R. (2006). Finiteness of relative equilibria of the four-body problem. Invent. Math. 163: 289–312

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Hampton M. and Santoprete M. (2007). Seven-body central configurations: A family of central configurations in the spatial seven-body problem. Cel. Mech. Dyn. Astr. 99: 293–305

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Huber B. and Sturmfels B. (1995). A polyhedral method for solving sparse polynomial systems. Math. Comp. 64: 1541–1555

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Kotsireas I. and Lazard D. (2002). Central configurations of the 5-body problem with equal masses in three-dimensional space. J. Math. Sci. 108: 1119–1138

    Article  MathSciNet  Google Scholar 

  • Krawczyk R. (1969). Newton-algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken. Computing 4: 187–201

    Article  MATH  MathSciNet  Google Scholar 

  • Leandro E.S.G. (2003). Finitness and bifurcations of some symmetrical classes of central configurations. Arch. Rational Mech. Anal. 167: 147–177

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Lee T.L., Li T.Y. and Tsai C.H. (2008). HOM4PS-2.0: a software package for solving polynomial systems by the polyhedral homotopy continuation method. Computing 83: 109–133

    Article  MATH  MathSciNet  Google Scholar 

  • Lee, T.L., Li, T.Y.: Mixed volume computation, a revisit (submitted) (2008)

  • Lehmann-Filhés R. (1891). Ueber zwei Fälle des Vielkörperproblems. Astron. Nachr. 127: 137–143

    Article  ADS  Google Scholar 

  • Li T.Y. (1997). Numerical solution of multivariate polynomial systems by homotopy continuation methods. ACTA Numer. 6: 399–436

    Article  Google Scholar 

  • Li T.Y. (1999). Solving polynomial systems by polyhedral homotopies. Taiwan J. Math. 3: 251–279

    MATH  Google Scholar 

  • Li T.Y. (2003). Solving polynomial Systems by the Homotopy Continuation Method. Handbook of Numerical Analysis. Amsterdam, North-Holland, 209–304

    Google Scholar 

  • Li, T.Y., Tsai, C.H.: HOM4PS-2.0para: parallelization of HOM4PS-2.0 for solving polynomial systems (submitted) (2009)

  • Llibre J. and Mello L.F. (2008). New central configurations for the planar 5-body problem. Cel. Mech. Dyn. Astr. 100: 141–149

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Llibre, J., Mello, L.F. and Perez-Chavela, E.: New stacked central configurations for the planar 5-body problem, preprint (2009)

  • Long Y. and Sun S. (2002). Four-body central configurations with some equal masses. Arch. Rational Mech. Anal 162: 24–44

    Article  ADS  MathSciNet  Google Scholar 

  • MacMillan W. and Bartky W. (1932). Permanent central configurations in the problem of four bodies. Trans. Amer. Math. Soc. 34: 838–875

    Article  MathSciNet  Google Scholar 

  • Mizutani T., Takeda A. and Kojima M. (2007). Dynamic enumeration of all mixed cells. Discrete Comput. Geom. 37: 351–367

    Article  MATH  MathSciNet  Google Scholar 

  • Moeckel, R.: Some relative equilibria of N equal masses, preprint (1989)

  • Moore R.E. (1977). A test for existence of solutions for non-linear systems. SIAM J. Numer. Anal. 4: 611–615

    Article  Google Scholar 

  • Moulton F.R. (1910). The straight line solutions of the problem of n-bodies. Ann. Math. 12: 1–17

    Article  MathSciNet  Google Scholar 

  • MPI (message passing interface): http://www-unix.mcs.anl.gov/mpi/

  • Perez-Chavela E. and Santoprete M. (2007). Convex four-body central configurations with some equal masses. Arch. Ration. Mech. Anal. 185: 481–494

    Article  MATH  MathSciNet  Google Scholar 

  • Pizzetti P. (1904). Casi particolari del problema dei tre corpi. Rendiconti 13: 17–26

    Google Scholar 

  • Roberts G. (1999). A continuum of relative equilibria in the 5-body problem. Physica D 127: 141–145

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Rump S.M. (1999). INTLAB—INTerval LABoratory. In Tibor Csendes, Editor’ Developments in Reliable Computing. Kluwer, Dordrecht, 77–104

    Google Scholar 

  • Saari D. (1980). On the role and properties of n-body central configurations. Celest. Mech. 21: 9–20

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Santos A.A. (2004). Dziobeks configurations in restricted problems and bifurcation. Cel. Mech. Dyn. Astr. 90: 213–238

    Article  MATH  ADS  Google Scholar 

  • Smale S. (1970). Topology and mechanics II. Inv. Math 11: 45–64

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Smale S. (1998). Mathematical problems for the next century. Math. Intell. 20: 7–15

    Article  MATH  MathSciNet  Google Scholar 

  • Tien, F.: Recursion Formulas of Central Configurations, Thesis, University of Minnesota (1993)

  • Uspensky J.V. (1948). Theory of Equations. McGraw Hill, New York

    Google Scholar 

  • Verschelde, J.: Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation. ACM Trans. Math. Softw. 25, 251–276. Software available at http://www.math.uic.edu/~jan (1999)

  • Sommerville D.M.Y. (1958). An Introduction to the Geometry of n Dimensions. Dover, New York

    MATH  Google Scholar 

  • Williams W.L. (1938). Permanent configurations in the problem of five bodies. Trans. Am. Math. Soc. 44: 563–579

    Article  MATH  Google Scholar 

  • Williams W.L. (1953). A Pentagon theorem. Am. Math. Mon. 60: 616–617

    Article  MATH  Google Scholar 

  • Wintner A. (1941). The Analytical Foundations of Celestial Mechanics Princeton Math Vol. 5. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Xia Z. (1991). Central configurations with many small Masses. J. Diff. Eqns. 91: 168–179

    Article  MATH  Google Scholar 

  • Xia Z. (2004). Convex central configurations for the n-body problem. J. Diff. Eqns. 200: 185–190

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsung-Lin Lee.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, TL., Santoprete, M. Central configurations of the five-body problem with equal masses. Celest Mech Dyn Astr 104, 369–381 (2009). https://doi.org/10.1007/s10569-009-9219-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-009-9219-0

Keywords

  • Celestial mechanics
  • n-Body problem
  • Central configurations
  • Polyedral homotopy continuation method