Skip to main content

A parametric study of stability and resonances around L 4 in the elliptic restricted three-body problem

Abstract

The size of the stable region around the Lagrangian point L 4 in the elliptic restricted three-body problem is determined by numerical integration as a function of the mass parameter and eccentricity of the primaries. The size distribution of the stable regions in the mass parameter-eccentricity plane shows minima at certain places that are identified with resonances between the librational frequencies of motions around L 4. These are computed from an approximate analytical equation of Rabe relating the frequency, mass parameter and eccentricity. Solutions of this equation are determined numerically and the global behaviour of the frequencies depending on the mass parameter and eccentricity is shown and discussed. The minimum sizes of the stable regions around L 4 change along the resonances and the relative strength of the resonances is analysed. Applications to possible Trojan exoplanets are indicated. Escape from L 4 is also investigated.

This is a preview of subscription content, access via your institution.

References

  • Bennett A.: Characteristic exponents of the five equilibrium solutions in the elliptically restricted problem. Icarus 4, 177–187 (1965)

    Article  ADS  Google Scholar 

  • Danby J.M.A.: Stability of the triangular points in the elliptic restricted problem of three bodies. Astron. J. 69, 165–172 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  • Deprit A., Deprit-Bartholome A.: Stability of the triangular Lagrangian points. Astron. J. 72, 173–179 (1967)

    Article  ADS  Google Scholar 

  • Dvorak, R., Schwarz, R., Lhotka, Ch.: On the dynamics of Trojan planets in extrasolar planetary systems. In: Exoplanets: Detection, Formation and Dynamics. Proceedings of the IAU Symposium No. 249, pp. 461–468 (2008a)

  • Dvorak R., Lhotka Ch., Schwarz R.: The dynamics of inclined Neptune Trojans. Celest. Mech. Dyn. Astr. 102, 97–110 (2008b)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Efthymiopoulos C., Sándor Zs.: Optimized Nekhoroshev stability estimates for the Trojan asteroids with a symplectic mapping model of co-orbital motion. MNRAS 364, 253–271 (2005)

    Article  ADS  Google Scholar 

  • Érdi B., Sándor Zs.: Stability of co-orbital motion in exoplanetary systems. Celest. Mech. Dyn. Astr. 92, 113–121 (2005)

    Article  MATH  ADS  Google Scholar 

  • Érdi B., Nagy I., Sándor Zs., Fröhlich G., Fröhlich G.: Secondary resonances of co-orbital motions. MNRAS 381, 33–40 (2007)

    Article  ADS  Google Scholar 

  • Giorgilli A., Skokos C.: On the stability of the Trojan asteroids. Astron. Astrophys. 317, 254–261 (1997)

    ADS  Google Scholar 

  • Goździewski K., Konacki M.: Trojan pairs in the HD 128311 and HD 82943 planetary systems?. Astrophys. J. 647, 573–586 (2006)

    Article  ADS  Google Scholar 

  • Györgyey J.: On the non-linear stability of motions arouns (L 5) in the elliptic restricted problem of three bodies. Celest. Mech. 36, 281–285 (1985)

    Article  MATH  ADS  Google Scholar 

  • Hou X.Y., Liu L.: Vertical bifurcation families from the long and short period families around the equilateral equilibrium points. Celest. Mech. Dyn. Astr. 101, 309–320 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  • Ji J., Kinoshita H., Liu L., Li G.: The secular evolution and dynamical architecture of the Neptunian triplet planetary system HD 69830. Astrophys. J. 657, 1092–1097 (2007)

    Article  ADS  Google Scholar 

  • Kinoshita H., Nakai H.: Quasi-satellites of Jupiter. Celest. Mech. Dyn. Astr. 98, 181–189 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Laughlin G., Chambers J.E.: Extrasolar Trojans: the viability and detectability of planets in the 1:1 resonance. Astron. J. 124, 592–600 (2002)

    Article  ADS  Google Scholar 

  • Levison H., Shoemaker E., Shoemaker C.: The dispersal of the Trojan asteroid swarm. Nature 385, 42–44 (1997)

    Article  ADS  Google Scholar 

  • Lhotka Ch., Efthymiopoulos C., Dvorak R.: Nekhoroshev stability at L 4 or (L 5) in the elliptic restricted three-body problem—application to Trojan asteroids. MNRAS 384, 1165–1177 (2008)

    Article  ADS  Google Scholar 

  • Lohinger E., Dvorak R.: Stability regions aroud L 4 in the elliptic restricted problem. Astron. Astrophys. 280, 683–687 (1993)

    ADS  Google Scholar 

  • Marchal C.: Predictability, stability and chaos in dynamical systems. In: Roy, A.E.(eds) Predictability, Stability and Chaos in N-Body Dynamical Systems, pp. 73–91. Plenum Press, New York (1991)

    Google Scholar 

  • Markellos V.V., Papadakis K.E., Perdios E.A.: Non-linear stability zones around the triangular Lagrangian points. In: Roy, A.E., Steves, B.(eds) From Newton to Chaos, pp. 371–377. Plenum Press, New York (1995)

    Google Scholar 

  • Marzari F., Scholl H.: On the instability of Jupiter’s Trojans. Icarus 159, 328–338 (2002)

    Article  ADS  Google Scholar 

  • Meire R.: The stability of the triangular points in the elliptic restricted problem. Celest. Mech. 23, 89–95 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  • Rabe E.: Two new classes of periodic Trojan librations in the elliptic restricted problem and their stabilities. In: Giacaglia, G.E.O.(eds) Periodic Orbits, Stability and Resonances, pp. 33–44. D. Reidel Publication Company, Dordrecht (1970)

    Google Scholar 

  • Rabe E.: Elliptic restricted problem: fourth-order stability analysis of the triangular points. In: Tapley, E.D., Szebehely, V.(eds) Recent Advances in Dynamical Astronomy, pp. 155–160. D. Reidel Publication Company, Dordrecht (1973)

    Google Scholar 

  • Robutel P., Gabern F.: The resonant structure of Jupiter’s Trojan asteroids—I. Long-term stability and diffusion. MNRAS 372, 1463–1482 (2006)

    Article  ADS  Google Scholar 

  • Szenkovits F., Makó Z.: About the Hill stability of extrasolar planets in stellar binary systems. Celest. Mech. Dyn. Astr. 101, 273–287 (2008)

    Article  ADS  Google Scholar 

  • Tschauner J.: Die Bewegung in der Nähe der Dreieckspunkte des elliptischen eingeschränkten Dreikörperproblems. Celest. Mech. 3, 189–196 (1971)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bálint Érdi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Érdi, B., Forgács-Dajka, E., Nagy, I. et al. A parametric study of stability and resonances around L 4 in the elliptic restricted three-body problem. Celest Mech Dyn Astr 104, 145–158 (2009). https://doi.org/10.1007/s10569-009-9197-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-009-9197-2

Keywords

  • Elliptic restricted three-body problem
  • Lagrangian point L 4
  • Stability
  • Resonances
  • Trojan planets
  • Rabe’s frequency equation