Abstract
The size of the stable region around the Lagrangian point L 4 in the elliptic restricted three-body problem is determined by numerical integration as a function of the mass parameter and eccentricity of the primaries. The size distribution of the stable regions in the mass parameter-eccentricity plane shows minima at certain places that are identified with resonances between the librational frequencies of motions around L 4. These are computed from an approximate analytical equation of Rabe relating the frequency, mass parameter and eccentricity. Solutions of this equation are determined numerically and the global behaviour of the frequencies depending on the mass parameter and eccentricity is shown and discussed. The minimum sizes of the stable regions around L 4 change along the resonances and the relative strength of the resonances is analysed. Applications to possible Trojan exoplanets are indicated. Escape from L 4 is also investigated.
This is a preview of subscription content, access via your institution.
References
Bennett A.: Characteristic exponents of the five equilibrium solutions in the elliptically restricted problem. Icarus 4, 177–187 (1965)
Danby J.M.A.: Stability of the triangular points in the elliptic restricted problem of three bodies. Astron. J. 69, 165–172 (1964)
Deprit A., Deprit-Bartholome A.: Stability of the triangular Lagrangian points. Astron. J. 72, 173–179 (1967)
Dvorak, R., Schwarz, R., Lhotka, Ch.: On the dynamics of Trojan planets in extrasolar planetary systems. In: Exoplanets: Detection, Formation and Dynamics. Proceedings of the IAU Symposium No. 249, pp. 461–468 (2008a)
Dvorak R., Lhotka Ch., Schwarz R.: The dynamics of inclined Neptune Trojans. Celest. Mech. Dyn. Astr. 102, 97–110 (2008b)
Efthymiopoulos C., Sándor Zs.: Optimized Nekhoroshev stability estimates for the Trojan asteroids with a symplectic mapping model of co-orbital motion. MNRAS 364, 253–271 (2005)
Érdi B., Sándor Zs.: Stability of co-orbital motion in exoplanetary systems. Celest. Mech. Dyn. Astr. 92, 113–121 (2005)
Érdi B., Nagy I., Sándor Zs., Fröhlich G., Fröhlich G.: Secondary resonances of co-orbital motions. MNRAS 381, 33–40 (2007)
Giorgilli A., Skokos C.: On the stability of the Trojan asteroids. Astron. Astrophys. 317, 254–261 (1997)
Goździewski K., Konacki M.: Trojan pairs in the HD 128311 and HD 82943 planetary systems?. Astrophys. J. 647, 573–586 (2006)
Györgyey J.: On the non-linear stability of motions arouns (L 5) in the elliptic restricted problem of three bodies. Celest. Mech. 36, 281–285 (1985)
Hou X.Y., Liu L.: Vertical bifurcation families from the long and short period families around the equilateral equilibrium points. Celest. Mech. Dyn. Astr. 101, 309–320 (2008)
Ji J., Kinoshita H., Liu L., Li G.: The secular evolution and dynamical architecture of the Neptunian triplet planetary system HD 69830. Astrophys. J. 657, 1092–1097 (2007)
Kinoshita H., Nakai H.: Quasi-satellites of Jupiter. Celest. Mech. Dyn. Astr. 98, 181–189 (2007)
Laughlin G., Chambers J.E.: Extrasolar Trojans: the viability and detectability of planets in the 1:1 resonance. Astron. J. 124, 592–600 (2002)
Levison H., Shoemaker E., Shoemaker C.: The dispersal of the Trojan asteroid swarm. Nature 385, 42–44 (1997)
Lhotka Ch., Efthymiopoulos C., Dvorak R.: Nekhoroshev stability at L 4 or (L 5) in the elliptic restricted three-body problem—application to Trojan asteroids. MNRAS 384, 1165–1177 (2008)
Lohinger E., Dvorak R.: Stability regions aroud L 4 in the elliptic restricted problem. Astron. Astrophys. 280, 683–687 (1993)
Marchal C.: Predictability, stability and chaos in dynamical systems. In: Roy, A.E.(eds) Predictability, Stability and Chaos in N-Body Dynamical Systems, pp. 73–91. Plenum Press, New York (1991)
Markellos V.V., Papadakis K.E., Perdios E.A.: Non-linear stability zones around the triangular Lagrangian points. In: Roy, A.E., Steves, B.(eds) From Newton to Chaos, pp. 371–377. Plenum Press, New York (1995)
Marzari F., Scholl H.: On the instability of Jupiter’s Trojans. Icarus 159, 328–338 (2002)
Meire R.: The stability of the triangular points in the elliptic restricted problem. Celest. Mech. 23, 89–95 (1981)
Rabe E.: Two new classes of periodic Trojan librations in the elliptic restricted problem and their stabilities. In: Giacaglia, G.E.O.(eds) Periodic Orbits, Stability and Resonances, pp. 33–44. D. Reidel Publication Company, Dordrecht (1970)
Rabe E.: Elliptic restricted problem: fourth-order stability analysis of the triangular points. In: Tapley, E.D., Szebehely, V.(eds) Recent Advances in Dynamical Astronomy, pp. 155–160. D. Reidel Publication Company, Dordrecht (1973)
Robutel P., Gabern F.: The resonant structure of Jupiter’s Trojan asteroids—I. Long-term stability and diffusion. MNRAS 372, 1463–1482 (2006)
Szenkovits F., Makó Z.: About the Hill stability of extrasolar planets in stellar binary systems. Celest. Mech. Dyn. Astr. 101, 273–287 (2008)
Tschauner J.: Die Bewegung in der Nähe der Dreieckspunkte des elliptischen eingeschränkten Dreikörperproblems. Celest. Mech. 3, 189–196 (1971)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Érdi, B., Forgács-Dajka, E., Nagy, I. et al. A parametric study of stability and resonances around L 4 in the elliptic restricted three-body problem. Celest Mech Dyn Astr 104, 145–158 (2009). https://doi.org/10.1007/s10569-009-9197-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10569-009-9197-2
Keywords
- Elliptic restricted three-body problem
- Lagrangian point L 4
- Stability
- Resonances
- Trojan planets
- Rabe’s frequency equation