Celestial Mechanics and Dynamical Astronomy

, Volume 102, Issue 4, pp 273–296 | Cite as

Dynamics of Enceladus and Dione inside the 2:1 mean-motion resonance under tidal dissipation

  • N. CallegariJr
  • T. Yokoyama
Original Article


In a previous work (Callegari and Yokoyama, Celest. Mech. Dyn. Astr. 98:5–30, 2007), the main features of the motion of the pair Enceladus–Dione were analyzed in the frozen regime, i.e., without considering the tidal evolution. Here, the results of a great deal of numerical simulations of a pair of satellites similar to Enceladus and Dione crossing the 2:1 mean-motion resonance are shown. The resonance crossing is modeled with a linear tidal theory, considering a two-degrees-of-freedom model written in the framework of the general three-body planar problem. The main regimes of motion of the system during the passage through resonance are studied in detail. We discuss our results comparing them with classical scenarios of tidal evolution of the system. We show new scenarios of evolution of the Enceladus–Dione system through resonance not shown in previous approaches of the problem.


Enceladus Dione Mean-motion resonance Satellites Saturn satellites Tidal evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Callegari N. Jr, Ferraz-Mello S., Michtchenko T.A.: Dynamics of two planets in the 3/2 mean-motion resonance: application to the planetary system of the pulsar PSR B1252+12. Celest. Mech. Dyn. Astr. 94, 381–397 (2006)zbMATHCrossRefADSMathSciNetGoogle Scholar
  2. Callegari N. Jr, Yokoyama T.: Dynamics of two Satellites in the 2:1 mean-motion resonance: application to the case of Enceladus and Dione. Celest. Mech. Dyn. Astr. 98, 5–30 (2007)zbMATHCrossRefADSMathSciNetGoogle Scholar
  3. Christou A.A., Namouni F., Morais M.H.M.: The long term stability of coorbital moons of the satellites of Saturn I. Conservative case. Icarus 192, 106–116 (2007)CrossRefADSGoogle Scholar
  4. Ferraz-Mello S.: First-order resonances in satellites orbits. In: Ferraz-Mello, S., Sessin, W. (eds) Resonances in the Motion of the Planets, Satellites and Asteroids, pp. 37–52. IAG/USP, Sao Paulo (1985)Google Scholar
  5. Ferraz-Mello S., Dvorak R.: Chaos and secular variations of planar orbits in 2:1 resonance with Dione. Astr. Astrophys. 179, 304–310 (1987)zbMATHADSGoogle Scholar
  6. Ferraz-Mello S., Hussmann H.: The interplay of tides and resonance in the evolution of the orbit of hyperion. Bull. Am. Astron. Soc. 37, 728 (2005)ADSGoogle Scholar
  7. Ferraz-Mello S., Rodríguez A., Hussmann H.: Tidal friction in close-in satellites and exoplanets: the Darwin theory re-visited. Celest. Mech. Dyn. Astr. 101, 171–201 (2008)zbMATHCrossRefADSGoogle Scholar
  8. Goldreich P.: An explanation of the frequent occurrence of commensurable mean-motion in the solar system. MNRAS 130, 159–181 (1965)ADSGoogle Scholar
  9. Henrard J., Lemaitre A.: A second fundamental model for resonance. Celest. Mech. 39, 197–218 (1983)ADSMathSciNetGoogle Scholar
  10. Henrard J., Sato M.: The origin of chaotic behaviour in the Miranda-Umbriel 3:1 resonances. Celest. Mech. 47, 391–417 (1990)zbMATHCrossRefADSMathSciNetGoogle Scholar
  11. Jacobson R.A., Antreasian P.G., Bordi J.J., Criddle K.E., Ionasescu R., Jones J.B., Mackenzie R.A., Meek M.C., Parcher D., Pelletier F.J., Owen W.M. Jr, Roth D.C., Roundhill I.M., Stauch J.R.: The gravity field of the Saturnian system from satellite observations and spacecraft tracking data. Astron. J. 132, 2520–2526 (2006)CrossRefADSGoogle Scholar
  12. Malhotra R., Dermott S.F.: The role of secondary resonances in the orbital history of Miranda. Icarus 85, 444–480 (1990)CrossRefADSGoogle Scholar
  13. Meyer J., Wisdom J.: Tidal evolution of Mimas, Enceladus and Dione. Icarus 193, 213–223 (2008)CrossRefADSGoogle Scholar
  14. Murray C.D., Dermott S.F.: Solar System Dynamics. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  15. Nogueira, E.C.: Efeitos da migraçao planetária primordial sobre a estabilidade de satélites regulares e a possível captura de satélites irregulares. Dr. Thesis, UFRJ, Brazil (2008)Google Scholar
  16. Peale S.J.: Orbital resonances, unusual configurations and exotic rotation states among planetary satellites. In: Burns, J.A. (eds) Satellites, pp. 159–223. University of Arizona Press, Tucson (1986)Google Scholar
  17. Peale S.J.: Speculative histories of the Uranian satellite system. Icarus 74, 153–171 (1988)CrossRefADSGoogle Scholar
  18. Peale S.J.: Origin and evolution of the natural satellites. Annu. Rev. Astron. Astrophys. 37, 533–602 (1999)CrossRefADSGoogle Scholar
  19. Peale S.J.: Tidally induced Volcanism. Celest. Mech. Dyn. Astr. 87, 129–155 (2003)zbMATHCrossRefADSGoogle Scholar
  20. Sinclair A.T.: On the origin of the commensurabilities amongst the satellites of Saturn. MNRAS 160, 169–187 (1972)ADSGoogle Scholar
  21. Sinclair A.T.: On the origin of the commensurabilities amongst the satellites of Saturn - II. MNRAS 166, 165–180 (1974)ADSGoogle Scholar
  22. Sinclair, A. T.: A re-consideration of the evolution hyphotesis of the origin of the resonances among Saturn’s satellites. In: Markelos, V.V., Kozai, Y. (eds.) Dynamical trapping and evolution in solar system; Proc. IAU Coll. 74, pp. 19–25. D. Reidel Publishing. Co., Dordrecht (1983)Google Scholar
  23. Tittemore W., Wisdom J.: Tidal evolution of the Uranian satellites I. Passage of Ariel and Umbriel through the 5:3 mean-motion commensurability. Icarus 74, 172–230 (1988)CrossRefADSGoogle Scholar
  24. Tittemore W., Wisdom J.: Tidal evolution of the Uranian satellites II. An explanation of the anomalously high orbital inclination of Miranda. Icarus 78, 63–89 (1989)CrossRefADSGoogle Scholar
  25. Tittemore W., Wisdom J.: Tidal evolution of the Uranian satellites III. Evolution through the Miranda–Umbriel 3:1, Miranda–Ariel 5:3, and Ariel–Umbriel 2:1 mean-motion commensurability. Icarus 85, 394–443 (1990)CrossRefADSGoogle Scholar
  26. Tsiganis K., Gomes R., Morbidelli A., Levison H.F.: Origin of the orbital architecture of the giant planets of the solar system. Nature 435, 459–461 (2005)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Departamento de EstatísticaMatemática Aplicada e Computação, UNESPRio ClaroBrazil

Personalised recommendations