Skip to main content
Log in

Numerical integration of relativistic equations of motion for Earth satellites

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

The equations of motion proposed by Brumberg for an artificial satellite around the Earth (Celest Mech Dyn Astron 88:209, 2004), in which the relativistic effects due to the Earth’s oblatness and the gravitational action caused by a third body are added to those perturbations considered in the International Earth Rotation and Reference System Service (2003) convention, are here integrated numerically. To compute the solution of the time-dependent Langrangian system for a gravitational satellite–Earth–Sun model we consider a six-order partitioned Runge–Kutta integrator, whose coefficients satisfy the condition of symplecticity. A comparison with the classical Adams–Basforth–Moulton method allows to verify the good-performance of the partitioned Runge–Kutta method both in the description of the evolution of the satellite energy and in the efficiency of the method when applied to a long-term integration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beshenov, A.V.: MPFRCPP the Multiple Precision Floating-Point Reliable Library C++ Interface. Available from http://beshenov.ru/mpfrcpp/ (2007)

  • Brumberg V.A.: Essential Relativistic Celestial Mechanics. Adam Hilger, Bristol (1991)

    MATH  Google Scholar 

  • Brumberg V.A.: On relativistic equations of motion of an Earth satellite. Celest. Mech. Dyn. Astron. 88, 209–225 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Brumberg V.A., Kopeikin S.M.: Relativistic reference systems and motion of test bodies in the vicinity of the Earth. Nuovo Cimento B 103, 63–98 (1989)

    Article  ADS  Google Scholar 

  • Damour T., Soffel M., Xu C.: General-relativistic celestial mechanics. IV. Theory of satellite motion. Phys. Rev. D 49, 618–635 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  • Gander W.: Generating numerical algorithms using a computer algebra system. BIT Numer. Math. 46, 491–504 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Hairer E., Wanner G.: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. Springer-Verlag, Berlin (1996)

    MATH  Google Scholar 

  • Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: The Multiple Precision Floating-Point Reliable Library Edition 2.3.1. Available from http://www.mpfr.org/mpfr-current/ (2008)

  • Herrick S.: Astrodynamics. Orbit Determination, Space Navigation, Celestial Mechanics. van Nostrand Reinhold Company, London (1971)

    MATH  Google Scholar 

  • Higueras I., Roldán T.: Stage value predictors for additive and partitioned Runge–Kutta methods. Appl. Numer. Math. 56, 1–18 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Huang C., Liu L.: Analytical solutions to the four post-Newtonian effects in a near-Earth satellite orbit. Celest. Mech. Dyn. Astron. 53, 293–307 (1992)

    Article  MATH  ADS  Google Scholar 

  • Lanczos, C.: The Variational Principles of Mechanics. University of Toronto Press (1949)

  • Marsden J.E., West M.: Discrete mechanics and variational integratords. Acta Numerica 10, 357–514 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • McCarthy, D., Petit, G.: IERS Conventions 2003. International Earth Rotation and Reference System Service. Verlag des Bundesamts für Kartographie un Geodäsie, Frankfurt am Main (2004)

  • Montenbuck O., Gill E.: Satellite Orbits: Models, Methods and Applications. Springer-Verlag, Berlin (2000)

    Google Scholar 

  • Shampine L.F., Gordon M.K.: Computer Solution of Ordinary Differential Equations: The Initial Value Problem. W.H. Freeman and Company, San Francisco (1975)

    MATH  Google Scholar 

  • Soffel M.H.: Relativity in Astrometry, Celestial Mechanics and Geodesy. Springer-Verlag, Berlin (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. San Miguel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

San Miguel, A. Numerical integration of relativistic equations of motion for Earth satellites. Celest Mech Dyn Astr 103, 17–30 (2009). https://doi.org/10.1007/s10569-008-9162-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-008-9162-5

Keywords

Navigation