Skip to main content
Log in

Ordered and chaotic Bohmian trajectories

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We discuss the issue of ordered and chaotic trajectories in the Bohmian approach of Quantum Mechanics from points of view relevant to the methods of Celestial Mechanics. The Bohmian approach gives the same results as the orthodox (Copenhagen) approach, but it considers also underlying trajectories guided by the wave. The Bohmian trajectories are rather different from the corresponding classical trajectories. We give examples of a classical chaotic system that is ordered quantum-mechanically and of a classically ordered system that is mostly chaotic quantum mechanically. Then we consider quantum periodic orbits and ordered orbits, that can be represented by formal series of the “third integral” type, and we study their asymptotic properties leading to estimates of exponential stability. Such orbits do not approach the “nodal points” where the wavefunction ψ vanishes. On the other hand, when an orbit comes close to a nodal point, chaos is generated in the neighborhood of a hyperbolic point (called X-point). The generation of chaos is maximum when the X-point is close to the nodal point. Finally we remark that high order periodic orbits may behave as “effectively ordered” or “effectively chaotic” for long times before reaching the period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bohm, D.: A suggested interpretation of the quantum theory in terms of “Hidden” variables I. Phys. Rev. 85, 166–179 (1952a)

    Article  ADS  MathSciNet  Google Scholar 

  • Bohm, D.: A suggested interpretation of the quantum theory in terms of “Hidden” variables II. Phys. Rev. 85, 180–193 (1952b)

    Article  ADS  MathSciNet  Google Scholar 

  • Bohm, D., Vigier, J.P.: Model of the causal interpretation of quantum theory in terms of a fluid with irregular fluctuations. Phys. Rev. 26, 208–216 (1954)

    Article  ADS  MathSciNet  Google Scholar 

  • Casati, G., Chirikov, B.V., Izrailev, F.M., Ford, J.: Stochastic behavior of a quantum pendulum under a periodic perturbation. In: Casati, G., Ford, J. (eds.) Lecture Notes in Physics, Vol. 93, p. 334–352 (1979)

  • Contopoulos, G.: A third integral of motion in a galaxy. Z. Astrophys. 49, 273–291 (1960)

    MATH  ADS  MathSciNet  Google Scholar 

  • Cushing, J.T.: Bohmian insights into quantum chaos. Phil. Sci. 67, 430–445 (2000)

    Article  MathSciNet  Google Scholar 

  • de Broglie, L.: Interference and corpuscular light. Nature 118, 441–442 (1926)

    Article  ADS  Google Scholar 

  • de Polavieja, G.G.: Exponential divergence of neighboring quantal trajectories. Phys. Rev. A 53, 2059–2061 (1996)

    Article  ADS  Google Scholar 

  • de Sales, J.A., Florencio, J.: Quantum chaotic trajectories in integrable right triangular billiards. Phys. Rev. E 67, 016216–1,016216–6 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  • Dewdney, C., Malik, Z.: Measurement, decoherence and chaos in quantum pinball. Phys. Lett. A 220, 183–188 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Dürr, D., Goldstein, S., Zanghi, N.: Quantum chaos, classical randomness, and Bohmian mechanics. J. Stat. Phys. 68, 259–270 (1992)

    Article  MATH  ADS  Google Scholar 

  • Efthymiopoulos, C., Contopoulos, G.: Chaos in Bohmian quantum mechanics. J. Phys. A 39, 1819–1852 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Efthymiopoulos, C., Contopoulos, G., Giorgilli, A.: Nonconvergence of formal integrals: II. Improved estimates for the optimal order of truncation. J. Phys. A 37, 10831–10858 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Efthymiopoulos, C., Kalapotharakos, C., Contopoulos, G.: Nodal points and the transition from ordered to chaotic Bohmian trajectories. J. Phys. A 40, 12945–12972 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Faisal, F.H.M., Schwengelbeck, U.: Unified theory of Lyapunov exponents and a positive example of deterministic quantum chaos. Phys. Lett. A 207, 31–36 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Falsaperla, P., Fonte, G.: On the motion of a single particle near a nodal line in the de Broglie–Bohm interpretation of quantum mechanics. Phys. Lett. A 316, 382–390 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Frisk, H.: Properties of the trajectories in Bohmian mechanics. Phys. Lett. A 227, 139–142 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Giorgilli, A.: Classical constructive methods in KAM theory. Planet. Space Sci. 46, 1441–1451 (1998)

    Article  ADS  Google Scholar 

  • Iacomelli, G., Pettini, M.: Regular and chaotic quantum motions. Phys. Let. A 212, 29–38 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Konkel, S., Makowski, A.J.: Regular and chaotic causal trajectories for the Bohm potential in a restricted space. Phys. Lett. A 238, 95–100 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Madelung, E.: Quantentheorie in hydrodynamischer form. Z. Phys. 40, 332–326 (1926)

    Google Scholar 

  • Makowski, A.J., Peplowski, P., Dembinski, S.T.: Chaotic causal trajectories: the role of the phase of stationary states. Phys. Lett. A 266, 241–248 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Parmenter, R.H., Valentine, R.W.: Deterministic chaos and the causal interpretation of quantum mechanics. Phys. Lett. A 201, 1–8 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Passon, O.: Why isn’t every physicist a Bohmian. arXiv: quant-ph/0412119 (2005).

  • Valentini, A., Westman, H.: Dynamical origin of quantum probabilities. Proc. R. Soc. A 461, 253–272 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Wisniacki, D.A., Pujals, E.R.: Motion of vortices implies chaos in Bohmian mechanics. Europhys. Lett. 71, 159–165 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  • Wu, H., Sprung, D.W.L.: Quantum chaos in terms of Bohm trajectories. Phys. Lett. A 261, 150–157 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Wyatt, R.E.: Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics. Springer, New York (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Contopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Contopoulos, G., Efthymiopoulos, C. Ordered and chaotic Bohmian trajectories. Celest Mech Dyn Astr 102, 219–239 (2008). https://doi.org/10.1007/s10569-008-9127-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-008-9127-8

Keywords

Navigation