Skip to main content
Log in

Stability of motion in the Sitnikov 3-body problem

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We study the stability of motion in the 3-body Sitnikov problem, with the two equal mass primaries (m 1m 2 = 0.5) rotating in the x, y plane and vary the mass of the third particle, 0 ≤ m 3 < 10−3, placed initially on the z-axis. We begin by finding for the restricted problem (with m 3 = 0) an apparently infinite sequence of stability intervals on the z-axis, whose width grows and tends to a fixed non-zero value, as we move away from z = 0. We then estimate the extent of “islands” of bounded motion in xyz space about these intervals and show that it also increases as |z| grows. Turning to the so-called extended Sitnikov problem, where the third particle moves only along the z-axis, we find that, as m 3 increases, the domain of allowed motion grows significantly and chaotic regions in phase space appear through a series of saddle-node bifurcations. Finally, we concentrate on the general 3-body problem and demonstrate that, for very small masses, m 3 ≈ 10−6, the “islands” of bounded motion about the z-axis stability intervals are larger than the ones for m 3 = 0. Furthermore, as m 3 increases, it is the regions of bounded motion closest to z = 0 that disappear first, while the ones further away “disperse” at larger m 3 values, thus providing further evidence of an increasing stability of the motion away from the plane of the two primaries, as observed in the m 3 =  0 case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alekseev, V.M.: Quasirandom dynamical systems I, II, III. Math. USSR Sbornik 5, 73–128; 6, 505–560; 7, 1–43 (1968a, b, 1969a)

  • Alekseev V.M. (1969b). Quasirandom dynamical systems. Mat. Zametki 6(4): 489–498

    Google Scholar 

  • Alfaro J.M. and Chiralt C. (1993). Invariant rotational curves in Sitnikov’s problem. Celest. Mech. Dyn. Astron. 55: 351–367

    Article  MATH  ADS  Google Scholar 

  • Belbruno E., Llibre J. and Olle M. (1994). On the families of the periodic orbits of the Sitnikov problem. Celest. Mech. Dyn. Astron. 50: 99–129

    ADS  MathSciNet  Google Scholar 

  • Chesley S.R. (1999). A global analysis of the generalized Sitnikov problem. Celest. Mech. Dyn. Astron. 73: 291–302

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • CorsJ. Libre J. (2004). The global flow of the parabolic restricted three-body problem. Celest. Mech. Dyn. Astron. 90: 13–33

    Article  ADS  Google Scholar 

  • Dvorak R. (1993). Numerical results to the Sitnikov problem. Celest. Mech. Dyn. Astron. 56: 71–80

    Article  ADS  Google Scholar 

  • Dvorak R. and Sun Y.S. (1997). The phase space structure of the extended Sitnikov-problem. Celest. Mech. Dyn. Astron. 67: 87–106

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Hagel J. (1992). A new analytic approach to the Sitnikov problem. Celest. Mech. Dyn. Astron. 53: 267–292

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Hagel J. and Lhotka Ch. (2005). A High order perturbation analysis of the Sitnikov problem. Celest. Mech. Dyn. Astron. 93: 201–228

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Hagel J. and Trenkler T. (1993). A computer aided analysis of the Sitnikov problem. Celest. Mech. Dyn. Astron. 56: 81–98

    Article  MATH  ADS  Google Scholar 

  • Liu J. and Sun Y.S. (1990). On the Sitnikov problem. Celest. Mech. Astron. 49: 285–302

    Article  ADS  MathSciNet  Google Scholar 

  • Mac Millan W.D. (1913). An integrable case in the restricted problem of three bodies. Astron. J. 27: 11–13

    Article  Google Scholar 

  • Marchal C. (1990). Three Body problem. Elsevier Science Publishers, Amsterdam, New York and Tokyo

    MATH  Google Scholar 

  • Moser, J.: Stable and Random Motions in Dynamical Systems. In: Annals of Mathematics Studies No. 77. Princeton University Press and University of Tokyo Press, Princeton, New Jersey (1973)

  • Pavanini, G.: Sopra una nuova categoria di solutioni periodiche nel problema dei tre corpi. Annali di Mathematica, Serie III, Tomo XIII, 179 (1907)

  • Sitnikov C. (1960). The existence of oscillatory motions in the three-body problem. Dokl. Akad. Nauk USSR 133(2): 303–306

    MathSciNet  Google Scholar 

  • Skokos Ch. (2001). Alignment indices: a new, simple method for determining the ordered or chaotic nature of orbits. J. Phys. A: Math. Gen. 34: 10029–10043

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Skokos Ch., Antonopoulos Ch., Bountis T.C. and Vrahatis M.N. (2003). How does the smaller alignment index (SALI) distinguish order from chaos. Prog. Theor. Phys. Supp. 150: 439–443

    Article  ADS  Google Scholar 

  • Skokos Ch., Antonopoulos Ch., Bountis T.C. and Vrahatis M.N. (2004). Detecting order and chaos on Hamiltonian systems by the SALI method. J. Phys. A:Math. Gen. 37: 6269–6284

    Article  ADS  MathSciNet  Google Scholar 

  • Soulis, P., Bountis, T., Leftaki, M.: Regular and Chaotic Dynamics in Sitnikov’s Circular 3-Body Problem. In: Proc. of 1st International Conference, From Scientific Computing to Computational Engineering 1st IC-SCCE, Athens, 8–10 (2004)

  • Wodnar K.: New formulations of the Sitnikov problem. In: Roy A.E. (ed.) Predictability, Stability and Chaos in N-body Dynamical Systems, NATO ASI Series B272, Plenum Press, New York and London (1991)

  • Wodnar K. (1993). The original Sitnikov article new insights. Celest. Mech. Dyn. Astron. 56: 99–101

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Dvorak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soulis, P., Bountis, T. & Dvorak, R. Stability of motion in the Sitnikov 3-body problem. Celestial Mech Dyn Astr 99, 129–148 (2007). https://doi.org/10.1007/s10569-007-9093-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-007-9093-6

Keywords

Navigation