Skip to main content
Log in

Homographic solutions in the planar n + 1 body problem with quasi-homogeneous potentials

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We prove that for generalized forces which are function of the mutual distance, the ring n + 1 configuration is a central configuration. Besides, we show that it is a homographic solution. We apply the above results to quasi-homogeneous potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arribas M. and Elipe A. (2004). Bifurcations and equilibria in the extended N-body ring problem. Mech. Res. Comm. 31: 1–8

    Article  MATH  Google Scholar 

  • Cid R., Ferrer S. and Elipe A. (1983). Regularization and linearization of the equations of motion in central force-field. Celest. Mech. 31: 73–80

    Article  MATH  ADS  Google Scholar 

  • Cid R. and Elipe A. (1985). On the motion of three rigid-bodies. Central configurations. Celest. Mech. 37: 113–126

    Article  ADS  Google Scholar 

  • Diacu, F., Pérez-Chavela, E., Santoprete, M.: The Kepler problem with anisotropic perturbations. J. Math. Phys. 46, 072701-1–21 (2005)

  • Elipe A. (1992). On the restricted three-body problem with generalized forces. Astrophys. Space Sci. 188: 257–269

    Article  MATH  ADS  Google Scholar 

  • Elipe A. and Ferrer S. (1985). On the equilibrium solution in the circular planar restricted three rigid bodies problem. Celest. Mech. 37: 59–70

    Article  ADS  Google Scholar 

  • Kalvouridis T.J. (1999). A planar case of the n + 1 body problem: the ring problem. Astrophys. Space Sci. 260: 309–325

    Article  ADS  Google Scholar 

  • Kalvouridis T.J. (2001). Zero velocity surface in the three-dimensional ring problem of N + 1 bodies. Celest. Mech. Dyn. Astron. 80: 133–144

    Article  MATH  ADS  Google Scholar 

  • Hadjifotinou K.G. and Kalvouridis T.J. (2005). Numerical investigation of periodic motion in the three-dimensional ring problem of N bodies. Int. J. Bifurc. Chaos 15: 2681–2688

    Article  MATH  Google Scholar 

  • Maxwell J.C. (1859). On the Stability of Motions of Saturn’s Rings. Macmillan and Cia., Cambridge

    Google Scholar 

  • Mioc V. and Stavinschi M. (1998). On The Schwarzschild-type polygonal (n + 1)-body problem and on the associated restricted problem. Baltic Astron. 7: 637–651

    ADS  Google Scholar 

  • Mioc V. and Stavinschi M. (1999). On Maxwell’s (n + 1)-body problem in the Manev-type field and on the associated restricted problem. Physica Scripta. 60: 483–490

    Article  MATH  ADS  Google Scholar 

  • Scheeres, D.J.: On symmetric central configurations with application to satellite motion about rings. Ph.D. Thesis. University of Michigan (1992)

  • Scheeres D.J. and Vinh N.X. (1991). Linear stability of a self-gravitating ring. Celest. Mech. Dyn. Astron. 51: 83–103

    Article  ADS  Google Scholar 

  • Wintner A. (1947). The Analytical Foundations of Celestial Mechanics. Princeton University Press, Princeton

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Elipe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arribas, M., Elipe, A., Kalvouridis, T. et al. Homographic solutions in the planar n + 1 body problem with quasi-homogeneous potentials. Celestial Mech Dyn Astr 99, 1–12 (2007). https://doi.org/10.1007/s10569-007-9083-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-007-9083-8

Keywords

Navigation