Dynamics of two satellites in the 2/1 Mean–Motion resonance: application to the case of Enceladus and Dione

  • N. CallegariJr.
  • T. Yokoyama
Original Article


The dynamics of a pair of satellites similar to Enceladus–Dione is investigated with a two-degrees-of-freedom model written in the domain of the planar general three-body problem. Using surfaces of section and spectral analysis methods, we study the phase space of the system in terms of several parameters, including the most recent data. A detailed study of the main possible regimes of motion is presented, and in particular we show that, besides the two separated resonances, the phase space is replete of secondary resonances.


Enceladus Dione Mean–Motion resonance Periodic orbits Regular and chaotic motion Secondary resonance Saturn 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beaugé, C., Callegari Jr., N., Ferraz-Mello, S., Michtchenko, T.A.: Resonances and stability of extra-solar planetary systems. In: Knežević Z., Milani A.(eds.). IAU Colloq. 197, 3–18 (2005)Google Scholar
  2. 2.
    Bevilacqua J.S. and Sessin W. (1987). First order perturbation in the Enceladus–Dione system. Rev. Mex. Astr. Astrof. 14: 627–630 ADSGoogle Scholar
  3. 3.
    Bevilacqua, J.S., Sessin, W., Chen, J.: Periodic orbits in the Enceladus–Dione system’. In: Vieira Martins R. et al. (eds.) Orbital Dynamics of Natural and Artificial Objects, 13–21, Observatório Nacional, Rio de Janeiro, Brasil (1989).Google Scholar
  4. 4.
    Michtchenko T.A., Ferraz-Mello S. and Callegari N. (2004). Dynamics of two planets in the 2/1 mean–motion resonance. Celest. Mech. Dyn. Astr. 89: 201–234 zbMATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Ferraz-Mello S., Michtchenko T.A. and Callegari N. (2006). Dynamics of two planets in the 3/2 mean-motion resonance: application to the planetary system of the pulsar PSR B1252+12. Celest. Mech. Dyn. Astr. 94: 381–397 zbMATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Champenois S. and Vienne A. (1999). Chaos and secondary resonances in the Mimas-Tethys system. Celest. Mech. Dyn. Astr. 74: 111–146 zbMATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Ferraz-Mello S. (1985). First-order resonances in satellites orbits. In: Ferraz-Mello, S. and Sessin, W. (eds) Resonances in the Motion of the Planets, Satellites and Asteroids, pp 37–52. IAG/USP, Sao Paulo Google Scholar
  8. 8.
    Ferraz-Mello S. and Dvorak R. (1987). Chaos and secular variations of planar orbits in 2:1 resonance with Dione. Astr. and Astrophys. 179: 304–310 zbMATHADSGoogle Scholar
  9. 9.
    Ferraz-Mello, S., Michtchenko, T.A., Beaugé, C.: Regular motions in extra-solar planetary systems. In Steves, B.A., Maciejewicz, A.J., Hendry M. (eds.) Chaotic Worlds: From Order to Disorder in Gravitational N-Body Systems, pp. 255–288. Springer, Dordrecht. ArXiv: astro-ph/0402335 (2006)Google Scholar
  10. 10.
    Ferraz-Mello, S., Michtchenko, T.A., Beaugé, C., Callegari Jr. N.: Extra-solar planetary systems. In: Dvorak, R. et al. (eds.) Lecture Notes in Physics, 683, 219–271 (2005)Google Scholar
  11. 11.
    Goldreich P. (1965). An explanation of the frequent occurence of commensurable mean motion in the solar system. MNRAS 130: 159–181 ADSGoogle Scholar
  12. 12.
    Henrard J. and Lemaitre A. (1983). A second fundamental model for resonance. Celest. Mech. 39: 197–218 ADSMathSciNetGoogle Scholar
  13. 13.
    Hori G. (1985). Mutual perturbations of 1:1 commensurable small bodies with the use of canonical relative coordinates. Part I. In: Ferraz-Mello, S. and Sessin, W. (eds) Resonances in the Motion of the Planets, Satellites and Asteroids., pp 33–66. IAG/USP, Sao Paulo Google Scholar
  14. 14.
    Jacobson R.A. (2004). The orbits of the major Saturn Satellites and the gravity field of Saturn from spacecraft and Earth-based observations. Astron. J. 128: 492–501 CrossRefADSGoogle Scholar
  15. 15.
    Jacobson R.A., Antreasian P.G., Bordi J.J., Criddle K.E., Ionasescu R., Jones J.B., Mackenzie R.A., Pelletier F.J., Owen W.M., Roth D.C. and Stauch J.R. (2005). The gravity field of the Saturnian system and the orbits of the major Saturnian satellites. Bull. Am. Astron. Soc. 37: 729 ADSGoogle Scholar
  16. 16.
    Jacobson R.A., Antreasian P.G., Bordi J.J., Criddle K.E., Ionasescu R., Jones J.B., Mackenzie R.A., Meek M.C., Parcher P., Pelletier F.J., Owen W.M., Roth D.C., Roundhill I.M. and Stauch J.R. (2006). The gravity field of the Saturnian system from satellite observations and spacecraft tracking data. Astron. J. 132: 2520–2526 CrossRefADSGoogle Scholar
  17. 17.
    Jancart S., Lemaitre A. and Istace A. (2002). Second fundamental model of resonance with asymmetric equilibria. Celest. Mech. Dyn. Astr. 84: 197–221 zbMATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Karch M. and Dvorak R. (1988). New results on the possible chaotic motion of Enceladus. Celest. Mech. Dyn. Astr. 43: 361–369 ADSMathSciNetGoogle Scholar
  19. 19.
    Laskar J. and Robutel P. (1995). Stability of the planetary three-body problem I: expansion of the planetary Hamiltonian. Celest. Mech. Dyn. Astr. 62: 193–217 zbMATHCrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Lemaitre A. and Henrard J. (1990). On the origin of chaotic behavior in the 2/1 Kirkwood gap. Icarus 83: 391–409 CrossRefADSGoogle Scholar
  21. 21.
    Lichtenberg A.J. and Lieberman M.A. (1983). Regular and stochastic motion. Springer-Verlag, Heidelberg zbMATHGoogle Scholar
  22. 22.
    Malhotra R. and Dermott S.F. (1990). The role of secondary resonances in the orbital history of miranda. Icarus 85: 444–480 CrossRefADSGoogle Scholar
  23. 23.
    Message, P.J.: Orbits of Saturn’s satellites: some aspects of commensurabilities and periodic orbits. In: Steves, B.A., Roy, A.E. (eds.) The Dynamics of Small Bodies in the Solar System. Kluwer Academic Publishers, pp. 207–225 (1999)Google Scholar
  24. 24.
    Michtchenko T.A. and Ferraz-Mello S. (2001). Modeling the 5:2 mean–motion resonance in the Jupiter–Saturn planetary system. Icarus 149: 357–374 CrossRefADSGoogle Scholar
  25. 25.
    Michtchenko T.A., Beaugé C. and Ferraz-Mello S. (2006). Stationary orbits in resonant extrasolar planetary systems. Celest. Mech. Dyn. Astr. 94: 411–432 zbMATHCrossRefADSGoogle Scholar
  26. 26.
    Peale, S.J: Orbital resonances, unsual configurations and exotic rotation states among planetary satellites. In: Burns, J.A. (ed.) Satellites pp. 159–223 (1986)Google Scholar
  27. 27.
    Peale S.J (1999). Origin and evolution of the natural atellites. Ann. Rev. Astron. Astrophys. 37: 533–602 CrossRefADSGoogle Scholar
  28. 28.
    Peale S.J (2003). Tidally induced volcanism. Celest. Mech. Dyn. Astr. 87: 129–155 zbMATHCrossRefADSGoogle Scholar
  29. 29.
    Spencer J.R., Pearl J.C., Segura M., Flasar F.M., Mamoutkine A., Romani P., Buratti B.J., Hendrix A.R., Spilker L.J. and Lopes R.M.C. (2006). Cassini encounters enceladus: background and the discovery of a south polar hot spot. Science 311: 1401–1405 CrossRefADSGoogle Scholar
  30. 30.
    Salgado T.M.V. and Sessin W. (1985). The 2:1 commensurability in Enceladus–Dione system. In: Ferraz-Mello, S. and Sessin, W. (eds) Resonances in the Motion of the Planets, Satellites and Asteroids, pp 93–105. IAG/USP, Sao Paulo Google Scholar
  31. 31.
    Sessin W. and Ferraz-Mello S. (1984). Motion of two planets with periods commensurable in the ratio 2:1. Solutions of the Hori auxiliaty system. Celest. Mech. 32: 307–332 zbMATHMathSciNetGoogle Scholar
  32. 32.
    Sinclair A.T. (1972). On the origin of the commensurabilities amongst the satellites of Saturn. MNRAS 160: 169–187 ADSGoogle Scholar
  33. 33.
    Sinclair, A.T.: A re-consideration of the evolution hyphotesis of the origin of the resonances among Saturn’s satellites. In: Dynamical trapping and evolution in solar system; Proceedings of Seventy-four Colloquium, Gerakini, Greece, August 30-September 2, 1982 (A84-34976 16-89), Dordrecht, D. Reidel Publishing. Co., pp. 19–25 (1983)Google Scholar
  34. 34.
    Shinkin V.N. (2001). Approximate analytic solutions of the averaged three-body problem at first-order resonance with large oblateness of the central planet. Celest. Mech. Dyn. Astr. 79: 15–27 zbMATHCrossRefADSMathSciNetGoogle Scholar
  35. 35.
    Tittemore W. and Wisdom J. (1988). Tidal evolution of the Uranian satellites I. Passage of Ariel and Umbriel through the 5:3 Mean-Motion Commensurability. Icarus 74: 172–230 CrossRefADSGoogle Scholar
  36. 36.
    Tittemore W. and Wisdom J. (1990). Tidal evolution of the Uranian satellites III. Evolution through the Miranda-Umbriel 3:1, Miranda-Ariel 5:3 and Ariel-Umbriel 2:1 Mean–Motion Commensurability. Icarus 85: 394–443 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Departamento de Estatística, Matemática Aplicada e ComputaçãoUNESPRio ClaroBrasil

Personalised recommendations