Celestial Mechanics and Dynamical Astronomy

, Volume 97, Issue 4, pp 289–304 | Cite as

Orbit determination of space debris: admissible regions

Original Article

Abstract

The main problem in the orbit determination of the space debris population orbiting our planet is identifying which separate sets of data belong to the same physical object. The observations of a given object during a passage above an observing station are collectively called a Too Short Arc (TSA): data from a TSA cannot allow for a complete determination of an orbit. Therefore, we have to solve first the identification problem, finding two or more TSAs belonging to the same physical object and an orbit fitting all the observations. This problem is well known for the determination of orbits of asteroids: we shall show how to apply the methods developed for preliminary orbit determination of heliocentric objects to geocentric objects. We shall focus on the definition of an admissible region for space debris, both in the case of optical observations and radar observations; then we shall outline a strategy to perform a full orbit determination.

Keywords

Space debris Orbit determination Admissible region 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agapov, V., Biryukov, V., Kiladze, R., Molotov, I., Rumyantsev, V., Sochilina, A., Titenko, V. Faint GEO objects search and orbital analysis. In: Proceedings of the Fourth European Conference on space debris, Darmstadt, Germany, ESA SP-587, 153–158 (2005)Google Scholar
  2. Barker, E., Jarvis, K., Africano, J., Jorgensen, K., Parr-Thumm, T., Matney, M., Stansbery, G. The GEO environment as determined by the Cdt between 1998 and 2002. In: Proceedings of the Fourth European Conference on space debris, Darmstadt, Germany, ESA SP-587, 135–140 (2005)Google Scholar
  3. Donath, T., Schildknecht, T., Brousse, P., Laycock, J., Michal, T., Ameline, P., Leushacke, L. Proposal for a European space surveillance system. In: Proceedings of the Fourth European Conference on space debris, Darmstadt, Germany, ESA SP-587, 31–38 (2005)Google Scholar
  4. Jehn, R., Ariafar, S., Schildknecht, T., Musci, R., Oswald, M. Estimating the number of debris in the geostationary ring. Paper presented at the “56th International Astronautical Conference”, Fukuoka, Japan, 2005Google Scholar
  5. Mehrholz D., Leushacke L., Flury W., Jehn R., Klinkrad H., Landgraf M. (2002) Detecting, tracking and imaging space debris. ESA Bulletin 109, 128–134ADSGoogle Scholar
  6. Michal, T., Eglizeaud, J.P., Bouchard, J. GRAVES: the new French system for space surveillance. In: Proceedings of the Fourth European Conference on space debris, Darmstadt, Germany, ESA SP-587, 61–66 (2005)Google Scholar
  7. Milani A., Chesley S.R. (2000) Virtual impactors: search and destroy. Icarus 145, 12–24CrossRefADSGoogle Scholar
  8. Milani A., Gronchi G.F., de’ Michieli Vitturi M., Knežević Z. (2004) Orbit determination with very short arcs. I admissible regions. Cel. Mech. Dyn. Ast. 90, 57–85CrossRefADSGoogle Scholar
  9. Milani A., Sansaturio M.E., Tommei G., Arratia O., Chesley S.R. (2005) Multiple solutions for asteroid orbits: computational procedure and applications. Astron. Astrophys. 431, 729–746CrossRefADSGoogle Scholar
  10. Milani A., Gronchi G.F., Knežević Z., Sansaturio M.E., Arratia O. (2005) Orbit determination with very short arcs. Icarus 179, 350–374CrossRefADSGoogle Scholar
  11. Milani A., Knežević Z. (2005) From astrometry to celestial mechanics: orbit determination with very short arcs. Cel. Mech. Dyn. Ast. 92, 1–18MATHCrossRefADSGoogle Scholar
  12. Rossi, A. Population models of space debris. In: Milani, A., Knežević, Z. (eds.) Dynamics of Population of Planetary Systems, Proceedings of IAU Coll. 197, 427–438, CUP (2005)Google Scholar
  13. Rossi A. (2005) The Earth orbiting space debris. Serb. Astron. J. 170, 1–12CrossRefGoogle Scholar
  14. Schildknecht, T., Musci, R., Flury, W., Kuusela, J., de Leon, J., de Fatima Dominguez Palmero, J. Optical observations of space debris in high-altitude orbits. In: Proceedings of the Fourth European Conference on space debris, Darmstadt, Germany, ESA SP-587, 113–118 (2005)Google Scholar
  15. Stansbery, G., Foster, G.L. Jr. Completeness of measurements of the orbital debris environment. In: Proceedings of the Fourth European Conference on space debris, Darmstadt, Germany, ESA SP-587, 95–100 (2005)Google Scholar
  16. Tommei, G. Impact monitoring of near-Earth objects: theoretical and computational results. Ph.D. Thesis, University of Pisa (2006)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of PisaPisaItaly
  2. 2.ISTI/CNRResearch Area of PisaPisaItaly

Personalised recommendations