Skip to main content
Log in

Strands and braids in narrow planetary rings: a scattering system approach

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We address the occurrence of narrow planetary rings and some of their structural properties, in particular when the rings are shepherded. We consider the problem as Hamiltonian scattering of a large number of non-interacting massless point particles in an effective potential. Using the existence of stable motion in scattering regions in this set up, we describe a mechanism in phase space for the occurrence of narrow rings and some consequences in their structure. We illustrate our approach with three examples. We find eccentric narrow rings displaying sharp edges, variable width and the appearance of distinct ring components (strands) which are spatially organized and entangled (braids). We discuss the relevance of our approach for narrow planetary rings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold V. (1964) Instability of dynamical systems with several degrees of freedom. Sov. Math. Dokl. 5, 581–585

    Google Scholar 

  • Arnold V., Kozlov V., Neishtadt A. (1988) Dynamical Systems III, vol 3 of Encyclopedia Math. Sci. Springer, Berlin

    Google Scholar 

  • Benet L., Merlo O. (2004) Phase–space structure for narrow planetary rings. Regul. Chaotic Dynam. 9, 373–384

    Article  MATH  MathSciNet  Google Scholar 

  • Benet L., Seligman T.H. (2000) Generic occurrence of rings in rotating scattering systems. Phys. Lett. A 273, 331–337

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Benet L., Seligman T.H., Trautmann D. (1998) Chaotic scattering in the restricted three-body problem II: small mass parameters. Celest. Mech. Dynam. Astron. 71, 167–189

    Article  ADS  MathSciNet  Google Scholar 

  • Benet L., Broch J., Merlo O., Seligman T.H. (2005) Symmetry breaking: a heuristic approach to chaotic scattering in many dimensions. Phys. Rev. E 71:036225

    Article  ADS  Google Scholar 

  • Borderies N., Goldreich P., Tremaine S.D. (1983) The dynamics of elliptical rings. Astron. J. 88:1560–1568

    Article  ADS  Google Scholar 

  • Charnoz S. et al. (2005) Cassini discovers a kinematic spiral ring around Saturn. Science 310:1300–1304

    Article  ADS  Google Scholar 

  • Elliot, J.L., Nicholson, P.D.: The rings of Uranus. In: Greenberg, R., Brahic, A. (eds.) Planetary Rings, pp. 25–72, University of Arizona Press (1984)

  • Elliot J.L., Dunham E.W., Millis R.L. (1977) Discovering the rings of Uranus. Sky Telescope 53, 412–416, 430

    ADS  Google Scholar 

  • Esposito L.W. (2002) Planetary rings. Rep. Prog. Phys. 65:1741–1783

    Article  ADS  Google Scholar 

  • Giuliatti Winter S.M., Murray C.D., Gordon M. (2000) Perturbations of Saturn’s F-ring strands at their closest approach to Prometheus. Planet. Space Sci. 48, 817–827

    Article  ADS  Google Scholar 

  • Goldreich P., Rappaport N. (2003a) Chaotic motions of Prometheus and Pandora. Icarus 162, 391–399

    Article  ADS  Google Scholar 

  • Goldreich P., Rappaport N. (2003b) Origin of chaos in the Prometheus–Pandora system. Icarus 166, 320–327

    Article  ADS  Google Scholar 

  • Goldreich P., Tremaine S.D. (1979) Towards a theory for the Uranian rings. Nature 277, 97–99

    Article  ADS  Google Scholar 

  • Hänninen J. (1993) Numerical simulation of moon–ringlet interactions. Icarus 103, 104–123

    Article  ADS  Google Scholar 

  • Hénon M. (1968) Sur les Orbites Interplanétaires qui Rencontrent Deux Fois la Terre. Bull. Astron. (serie 3) 3, 337-402

    Google Scholar 

  • Hénon M. (1997) Generating Families in the Restricted Three-Body Problem. Springer-Verlag, Berlin

    MATH  Google Scholar 

  • Hitzl D.L., Hénon M. (1977) Critical generating orbits for second species periodic solutions of the restricted problem. Celest. Mech. 15, 421–452

    Article  ADS  Google Scholar 

  • Jorba A., Villanueva J. (1997a) On the normal behaviour of partially elliptic lower dimensional tori of hamiltonian systems. Nonlinearity 10, 783–822

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Jorba A., Villanueva J. (1997b) On the persistence of lower dimensional invariant tori under quasi-periodic perturbations. J. Nonlinear Sci. 7, 427–473

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Lewis M.C., Stewart G.R. (2000) Collisional dynamics of perturbed planetary rings. I. Astron. J. 120:3295–3310

    Article  ADS  Google Scholar 

  • Lissauer J.J., Peale S.J. (1986) The production of “braids” in Saturn’s F ring. Icarus 67, 358–374

    Article  ADS  Google Scholar 

  • Merlo, O.: Through symmetry breaking to higher dimensional chaotic scattering. PhD Thesis, U. Basel, Switzerland (2004) (Online version at http://pages.unibas.ch/diss/2004/DissB_7024.htm)

  • Meyer N. et al. (1995) Chaotic scattering off a rotating target. J. Phys. A: Math. Gen. 28:2529–2544

    Article  ADS  Google Scholar 

  • Murray C.D., Dermott S.F. (1999) Solar System Dynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Murray C.D., Thompson R.P. (1990) Orbits of shepherd satellites deduced from the structure of the rings of Uranus. Nature 348, 499–502

    Article  ADS  Google Scholar 

  • Murray C.D., Gordon M.K., Giuliatti Winter S.M. (1997) Unraveling the Strands of Saturn’s F ring. Icarus 129, 304–316

    Article  ADS  Google Scholar 

  • Murray C.D. et al. (2005) How Prometheus creates structure in Saturn’s F ring. Nature 437:1326–1329

    Article  ADS  Google Scholar 

  • Namouni F., Porco C. (2002) The confinement of Neptune’s ring arcs by the moon Galatea. Nature 417, 45–47

    Article  ADS  Google Scholar 

  • Newton R.G. (1966) Scattering Theory of Waves and Particles. McGraw–Hill, New York

    Google Scholar 

  • Renner S., Sicardy B., French R.G. (2005) Prometheus and Pandora: masses and orbital positions during the Cassini tour. Icarus 174, 230–240

    Article  ADS  Google Scholar 

  • Rückerl B., Jung C. (1994) Scaling properties of a scattering system with an incomplete horseshoe. J. Phys. A: Math. Gen. 27, 55–77

    Article  MATH  ADS  Google Scholar 

  • Showalter M.R., Burns J.A. (1982) A numerical study of Saturn’s F ring. Icarus 52, 526–544

    Article  ADS  Google Scholar 

  • Sicardy B. (2005) Dynamics and composition of rings. Space Sci. Rev. 116, 457–470

    Article  ADS  Google Scholar 

  • Skokos Ch. (2001) On the stability of periodic orbits of high dimensional autonomous Hamiltonian systems. Physica D 159, 155–179

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Smith B.A. et al. (1981) Encounter with Saturn—Voyager 1 imaging science results. Science 212, 163–191

    Article  ADS  Google Scholar 

  • Smith B.A. et al. (1982) A new look at the Saturn system—Voyager 2 images. Science 215, 504–537

    Article  ADS  Google Scholar 

  • Szebehely V. (1967) Theory of Orbits. Academic Press, New York

    Google Scholar 

  • Ural’skaya V.S. (2003) Dynamics of planetary satellites in the solar system. Solar Syst. Res. 37, 337–365

    Article  ADS  Google Scholar 

  • Uzer T., Jaffé C., Palacián J., Yanguas P., Wiggins S. (2002) The geometry of reaction dynamics. Nonlinearity 15, 957–992

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Waalkens H., Burbanks A., Wiggins S. (2004) A computational procedure to detect a new type of high–dimensional chaotic saddle and its application to the 3D Hill’s problem. J. Phys. A: Math. Gen. 37, L257–L265

    Article  ADS  MathSciNet  Google Scholar 

  • Wiggins S., Wiesenfeld L., Jaffé C., Uzer T. (2001) Impenetrable barriers in phase-space. Phys. Rev. Lett. 86:5478–5481

    Article  ADS  Google Scholar 

  • Yakubovich V.A., Starzhinskii V.M. (1975) Linear Differential Equations with Periodic Coefficients, vol. 1. Wiley, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Benet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merlo, O., Benet, L. Strands and braids in narrow planetary rings: a scattering system approach. Celestial Mech Dyn Astr 97, 49–72 (2007). https://doi.org/10.1007/s10569-006-9051-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-006-9051-8

Keywords

Navigation