Skip to main content
Log in

Quaternions and the rotation of a rigid body

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

The orientation of an arbitrary rigid body is specified in terms of a quaternion based upon a set of four Euler parameters. A corresponding set of four generalized angular momentum variables is derived (another quaternion) and then used to replace the usual three-component angular velocity vector to specify the rate by which the orientation of the body with respect to an inertial frame changes. The use of these two quaternions, coordinates and conjugate moments, naturally leads to a formulation of rigid-body rotational dynamics in terms of a system of eight coupled first-order differential equations involving the four Euler parameters and the four conjugate momenta. The equations are formally simple, easy to handle and free of singularities. Furthermore, integration is fast, since only arithmetic operations are involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abad A., Arribas M., Elipe A. (1989) On the attitude of a spacecraft near a Lagrangian point. Bull. Astron. Inst. Czechosl. 40, 302–307

    MATH  ADS  Google Scholar 

  • Burdet C.A. (1968) Regularization of the two-body problem. Z. Angew. Math. Phys. 18, 434–438

    Article  Google Scholar 

  • Cid R., Sansaturio M.E. (1988) Motion of rigid bodies in a set of redundant variables. Celest. Mech. Dyn. Astron. 42, 263–274

    MathSciNet  Google Scholar 

  • Danby J.M.A. (1992) Fundamentals of Celestial Mechanics. Willmann-Bell Inc., Richmond

    Google Scholar 

  • Deprit A., Elipe A. (1993) Complete reduction of the Euler-Poinsot problem. J. Astron. Sci. 41, 603–628

    MathSciNet  Google Scholar 

  • Deprit A., Elipe A., Ferrer S. (1994) Linearization: Laplace versus Stiefel. Celest. Mech. Dyn. Astron. 58, 151–201

    Article  MathSciNet  ADS  Google Scholar 

  • Ferrándiz J.M. (1988) A general canonical transformation increasing the number of variables with application to the two-body problem. Celest. Mech. 41, 343–357

    MATH  ADS  Google Scholar 

  • Hamilton W.R. (1844) On Quaternions; or a new system of imaginaries in algebra. Philos. Mag. 25, 489–495

    Google Scholar 

  • Henrard J. (2005) The rotation of Europa. Celest. Mech. Dyn. Astron. 91, 131–149

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Junkins J.L., Singla P. (2004) How nonlinear is it? A tutorial on nonlinearity of orbit and attitude dynamics. J. Astron. Sci. 52, 7–60

    MathSciNet  Google Scholar 

  • Maciejewski A. (1985) Hamiltonian formalism for Euler parameters. Celest. Mech. Dyn. Astron. 37, 47–57

    MATH  Google Scholar 

  • Morton H.S. (1993) Hamiltonian and Lagrangian formulation of rigid-body rotational motion based on Euler parameters. J. Astron. Sci. 41, 439–517

    MathSciNet  Google Scholar 

  • Scheeres D.J. (2004) Bounds of rotation periods of disrupted binaries in the full 2-body problem. Celest. Mech. Dyn. Astron. 89, 127–140

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Shuster M.D. (1993) A survey on attitude representation. J. Astron. Sci. 41, 439–517

    MathSciNet  Google Scholar 

  • Shuster M.D., Natanson G.A. (1993) Quaternion computation from a geometric point of view. J. Astron. Sci. 41, 545–556

    MathSciNet  Google Scholar 

  • Stiefel E., Scheifele G. (1971) Linear and Regular Celestial Mechanics. Springer-Verlag, New York

    MATH  Google Scholar 

  • Waldvogel J. (2006) Quaternions and the perturbed Kepler problem. Celest. Mech. Dyn. Astron. 95, 201–212

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Elipe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arribas, M., Elipe, A. & Palacios, M. Quaternions and the rotation of a rigid body. Celestial Mech Dyn Astr 96, 239–251 (2006). https://doi.org/10.1007/s10569-006-9037-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-006-9037-6

Keywords

Navigation