Critical inclination in the main problem of a massive satellite

  • S. BreiterEmail author
  • A. Elipe


The classical problem of the critical inclination in artificial satellite theory has been extended to the case when a satellite may have an arbitrary, significant mass and the rotation momentum vector is tilted with respect to the symmetry axis of the planet. If the planet’s potential is restricted to the second zonal harmonic, according to the assumptions of the main problem of the satellite theory, two various phenomena can be observed: a critical inclination that asymptotically tends to the well known negligible mass limit, and a critical tilt that can be attributed to the effect of transforming the gravity field harmonics to a different reference frame. Stability of this particular solution of the two rigid bodies problem is studied analytically using a simple pendulum approximation.


Analytical methods Critical inclination Rigid body rotation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Breiter S., Melendo B., Bartczak P. and Wytrzyszczak I. (2005). Synchronous motion in the Kinoshita problem. Application to satellites and binary asteroids. Astron. Astrophys. 437: 753–764CrossRefADSGoogle Scholar
  2. Brouwer D. (1959). Solution of the problem of artificial satellite theory without drag. Astron. J. 64: 378–397MathSciNetCrossRefADSGoogle Scholar
  3. Coffey S.L., Deprit A. and Miller B.R. (1986). The critical inclination in artificial satellite theory. Celest. Mech. 39: 365–406zbMATHMathSciNetCrossRefADSGoogle Scholar
  4. Coffey S.L., Deprit A. and Deprit E. (1994). Frozen orbits for satellites close to an Earth-like planet. Celest. Mech. Dynam Astron. 59: 37–72zbMATHMathSciNetCrossRefADSGoogle Scholar
  5. Deprit A. (1969). Canonical transformation depending on a small parameter. Celest. Mech. 1: 12–30zbMATHMathSciNetCrossRefADSGoogle Scholar
  6. Deprit A. and Elipe A. (1993). Complete reduction of the Euler–Poinsot problem. J. Astron. Sci. 41: 603–628MathSciNetGoogle Scholar
  7. Kinoshita H. (1972). First-order perturbations of the two finite body problem. Publ. Astron. Soc. Japan 24: 423–457MathSciNetADSGoogle Scholar
  8. Koon W.S., Marsden J.E., Ross S.D., Lo M. and Scheeres D.J. (2004). Geometric mechanics and the dynamics of asteroid pairs. Ann. N.Y. Acad. Sci. 1017: 11–38CrossRefADSGoogle Scholar
  9. Scheeres D.J. (2001). Changes in rotational angular momentum due to gravitational interactions between two finite bodies. Celest. Mech. Dynam. Astron. 81: 39–44zbMATHCrossRefADSGoogle Scholar
  10. Scheeres D.J. (2002). Stability in the full two-body problem. Celest. Mech. Dynam. Astron. 83: 155–169zbMATHMathSciNetCrossRefADSGoogle Scholar
  11. Scheeres D.J. (2004). Stability of relative equilibria in the full two-body problem. Ann. N.Y. Acad. Sci. 1017: 81–94CrossRefADSGoogle Scholar
  12. Scheeres D.J. (2004). Bounds on rotations periods of disrupted binaries in the full 2-body problem. Celest. Mech. Dynam. Astron. 89: 127–140MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Astronomical Observatory of A. Mickiewicz UniversityPoznańPoland
  2. 2.Grupo de Mecánica EspacialUniversidad de ZaragozaZaragozaSpain

Personalised recommendations