Skip to main content
Log in

Deciphering Hi-C: from 3D genome to function

  • Review
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Hi-C is a commonly used technology in 3D genomics which can depict global chromatin interactions across eukaryotic genome. Integrating with different datasets, it can also be applied to studying various biological questions, such as nuclear organization, gene transcription regulation, spatiotemporal development, genome assembly, and cancer genomics. During the last decade, the development and application of Hi-C have dramatically changed the view of genome architecture, chromatin conformation, and gene interaction. So far, Hi-C-related studies remain vivacious and controversial; thus, a unified standard of library construction and bioinformatics analysis are urgently needed. In this review, we have summarized its history, development, methodologies, advances, applications, shortages, and future perspectives. We discuss a few limitations of the current Hi-C technologies and future directions for improvement and highlight how Hi-C can bridge 3D structure to gene function. This review will be helpful for scientists who want to engage in the 3D genomics field; it also shows some future tracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ay F, Bailey TL, Noble WS. Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts. Genome Res. 2014;24(6):999–1011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Battulin NR, Fishman VS, Mazur AM, Pomaznoy M, Khabarova AA, Afonnikov DA, et al. Comparison of the three-dimensional organization of sperm and fibroblast genomes using the Hi-C approach. Genome Biol. 2015;16(1):77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belton J, Mccord RP, Gibcus JH, Naumova N, Zhan Y, Dekker J. Hi–C: a comprehensive technique to capture the conformation of genomes. Methods. 2012;58(3):268–76.

    Article  CAS  PubMed  Google Scholar 

  • Berlivet S, Paquette D, Dumouchel A, Langlais D, Dostie J, Kmita M. Clustering of tissue-specific sub-TADs accompanies the regulation of HoxA genes in developing limbs. PLoS Genet. 2013;9(12):e1004018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bickhart DM, Rosen BD, Koren S, Sayre BL, Hastie AR, Chan S, et al. Single-molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome. Nat Genet. 2017;49(4):643–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bintu B, Mateo LJ, Su J-H, Sinnott-Armstrong NA, Parker M, Kinrot S, et al. Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science. 2018;362(6413):eaau1783. https://doi.org/10.1126/science.aau1783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonev B, Cavalli G. Organization and function of the 3D genome. Nat Rev Genet. 2016;17(11):661–78.

    Article  CAS  PubMed  Google Scholar 

  • Burton JN, Adey A, Patwardhan RP, Qiu R, Kitzman JO, Shendure J. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat Biotechnol. 2013;31(12):1119–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavalli G. Chromosomes: now in 3D! Nat Rev Mol Cell Biol. 2014;15(1):6–6.

    Article  CAS  PubMed  Google Scholar 

  • Chambers EV, Bickmore WA, Semple CAM. Divergence of mammalian higher order chromatin structure is associated with developmental loci. PLoS Comput Biol. 2013;9(4):e1003017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Li C, Peng X, Zhou Z, Weinstein JN, Liang H. A pan-cancer analysis of enhancer expression in nearly 9000 patient samples. Cell. 2018a;173(2):386–399.e12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen F, Li G, Zhang MQ, Chen Y. HiCDB: a sensitive and robust method for detecting contact domain boundaries. Nucleic Acids Research, gky789-gky789. 2018b. https://doi.org/10.1093/nar/gky789.

  • Cremer T, Cremer M, Cremer C. The 4D nucleome: genome compartmentalization in an evolutionary context. Biochemistry. 2018;83(4):313–25.

    CAS  PubMed  Google Scholar 

  • De Laat W, Dekker J. 3C-based technologies to study the shape of the genome. Methods. 2012;58(3):189–91.

    Article  CAS  PubMed  Google Scholar 

  • Dekker J, Rippe K, Dekker M, Kleckner N. Capturing chromosome conformation. Science. 2002;295(5558):1306–11.

    Article  CAS  PubMed  Google Scholar 

  • Dekker J, Belmont AS, Guttman M, Leshyk VO, Lis JT, Lomvardas S, et al. The 4D nucleome project. Nature. 2017;549(7671):219–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diament A, Tuller T. Tracking the evolution of 3D gene organization demonstrates its connection to phenotypic divergence. Nucleic Acids Res. 2017;45(8):4330–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diament A, Tuller T. Modeling three-dimensional genomic organization in evolution and pathogenesis. Semin Cell Dev Biol. 2018. https://doi.org/10.1016/j.semcdb.2018.07.008.

  • Diament A, Pinter RY, Tuller T. Three-dimensional eukaryotic genomic organization is strongly correlated with codon usage expression and function. Nat Commun. 2014;5(1):5876.

    Article  CAS  PubMed  Google Scholar 

  • Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature. 2012;485(7398):376–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon JR, Jung I, Selvaraj S, Shen Y, Antosiewiczbourget J, Lee AY, et al. Chromatin architecture reorganization during stem cell differentiation. Nature. 2015;518(7539):331–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon JR, Gorkin DU, Ren B. Chromatin domains: the unit of chromosome organization. Mol Cell. 2016;62(5):668–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dogan ES, Liu C. Three-dimensional chromatin packing and positioning of plant genomes[J]. Nature plants. 2018; 4(8),521–529, doi:https://doi.org/10.1038/s41477-018-0199-5.

  • Dostie J, Richmond T, Arnaout R, Selzer RR, Lee W, Honan T, et al. Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res. 2006;16(10):1299–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du Z, Zheng H, Huang B, Ma R, Wu J, Zhang X, et al. Allelic reprogramming of 3D chromatin architecture during early mammalian development. Nature. 2017;547(7662):232–5.

    Article  CAS  PubMed  Google Scholar 

  • Du X, Huang G, He S, Yang Z, Sun G, Ma X, et al. Resequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic traits. Nat Genet. 2018;50(6):796–802. https://doi.org/10.1038/s41588-018-0116-x.

    Article  CAS  PubMed  Google Scholar 

  • Duan Z, Blau CA. The genome in space and time. BioEssays. 2012;34(9):800–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudchenko O, Batra SS, Omer AD, Nyquist SK, Hoeger M, Durand NC, et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science. 2017;356(6333):92–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durand NC, Robinson JT, Shamim MS, Machol I, Mesirov JP, Lander ES, et al. Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst. 2016;3(1):99–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang R, Yu M, Li G, Chee S, Liu T, Schmitt AD, et al. Mapping of long-range chromatin interactions by proximity ligation-assisted ChIP-seq. Cell Res. 2016;26(12):1345–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feingold EA, Good PJ, Guyer MS, Kamholz S, Liefer L, Wetterstrand KA, et al. The ENCODE (ENCyclopedia of DNA Elements) project. Science. 2004;306(5696):636–40.

    Article  CAS  Google Scholar 

  • Flavahan WA, Drier Y, Liau BB, Gillespie SM, Venteicher AS, Stemmerrachamimov A, et al. Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature. 2016;529(7584):110–4.

    Article  CAS  PubMed  Google Scholar 

  • Flyamer IM, Gassler J, Imakaev M, Brandao HB, Ulianov SV, Abdennur N, et al. Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature. 2017;544(7648):110–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fullwood MJ, Liu MH, Pan YF, Liu J, Xu H, Mohamed YB, et al. An oestrogen-receptor-α-bound human chromatin interactome. Nature. 2009;462(7269):58–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibcus JH, Dekker J. The hierarchy of the 3D genome. Mol Cell. 2013;49(5):773–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giorgetti L, Lajoie BR, Carter AC, Attia M, Zhan Y, Xu J, et al. Structural organization of the inactive X chromosome in the mouse. Nature. 2016;535(7613):575–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goetze S, Mateoslangerak J, Van Driel R. Three-dimensional genome organization in interphase and its relation to genome function. Semin Cell Dev Biol. 2007;18(5):707–14.

    Article  CAS  PubMed  Google Scholar 

  • Grosberg AY, Nechaev SK, Shakhnovich EI. The role of topological constraints in the kinetics of collapse of macromolecules. J Phys. 1988;49(12):2095–100.

    Article  CAS  Google Scholar 

  • Grosberg A, Rabin Y, Havlin S, Neer A. Crumpled globule model of the three-dimensional structure of DNA. Epl. 1993;23(5):373–8.

    Article  CAS  Google Scholar 

  • Heinz S, Benner C, Spann NJ, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38(4):576–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinz S, Texari L, Hayes MGB, Urbanowski M, Chang MW, Givarkes N, et al. Transcription elongation can affect genome 3D structure. Cell. 2018;174(6):1522–1536.e1522. https://doi.org/10.1016/j.cell.2018.07.047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho JWK, Jung YL, Liu T, Alver BH, Lee S, Ikegami K, et al. Comparative analysis of metazoan chromatin organization. Nature. 2014;512(7515):449–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu M, Deng K, Qin Z, Liu JS. Understanding spatial organizations of chromosomes via statistical analysis of Hi-C data. Quant Biol. 2013;1(2):156–74.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hug CB, Grimaldi AG, Kruse K, Vaquerizas JM. Chromatin architecture emerges during zygotic genome activation independent of transcription. Cell. 2017;169(2):216–28.

    Article  CAS  PubMed  Google Scholar 

  • Ibnsalem J, Muro EM, Andradenavarro MA. Co-regulation of paralog genes in the three-dimensional chromatin architecture. Nucleic Acids Res. 2017;45(1):81–91.

    Article  CAS  Google Scholar 

  • Javierre B, Burren OS, Wilder SP, Kreuzhuber R, Hill SM, Sewitz S, et al. Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. Cell. 2016;167(5):1369–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin F, Li Y, Dixon JR, Selvaraj S, Ye Z, Lee AY, et al. A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature. 2013;503(7475):290–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalhor R, Tjong H, Jayathilaka N, Alber F, Chen L. Genome architectures revealed by tethered chromosome conformation capture and population-based modeling. Nat Biotechnol. 2012;30(1):90–8.

    Article  CAS  Google Scholar 

  • Ke Y, Xu Y, Chen XW, Feng S, Liu Z, Sun Y, et al. 3D chromatin structures of mature gametes and structural reprogramming during mammalian embryogenesis. Cell. 2017;170(2):367–81.

    Article  CAS  PubMed  Google Scholar 

  • Lanctot C, Cheutin T, Cremer M, Cavalli G, Cremer T. Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet. 2007;8(2):104–15.

    Article  CAS  PubMed  Google Scholar 

  • Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25(14):1754–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Liu Y, Li T, Li C. 3Disease browser: a web server for integrating 3D genome and disease-associated chromosome rearrangement data. Sci Rep. 2016;6(1):34651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Chen Y, Snyder MP, Zhang MQ. ChIA-PET2: a versatile and flexible pipeline for ChIA-PET data analysis. Nucleic Acids Res. 2017;45(1):e4.

    Article  CAS  PubMed  Google Scholar 

  • Li T, Jia L, Cao Y, Chen Q, Li C. OCEAN-C: mapping hubs of open chromatin interactions across the genome reveals gene regulatory networks[J]. Genome Biol. 2018a;19(1). https://doi.org/10.1186/s13059-018-1430-4.

  • Li R, Liu Y, Hou Y, Gan J, Wu P, Li C. 3D genome and its disorganization in diseases. Cell Biol Toxicol. 2018b; 1–15.

  • Liang Z, Li G, Wang Z, Djekidel MN, Li Y, Qian M, et al. BL-Hi-C is an efficient and sensitive approach for capturing structural and regulatory chromatin interactions. Nat Commun. 2017;8(1):1622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lieberman-Aiden E, Van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, et al. Comprehensive mapping of long range interactions reveals folding principles of the human genome. Science. 2009;326(5950):289–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin D, Hong P, Zhang S, Xu W, Jamal M, Yan K, et al. Digestion-ligation-only Hi-C is an efficient and cost-effective method for chromosome conformation capture[J]. Nat Genet. 2018;50(5), 754–763. https://doi.org/10.1038/s41588-018-0111-2.

  • Liu X, Zhang Y, Chen Y, Li M, Zhou F, Li K, et al. In situ capture of chromatin interactions by biotinylated dCas9. Cell. 2017;170(5):1028–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long HK, Prescott SL, Wysocka J. Ever-changing landscapes: transcriptional enhancers in development and evolution. Cell. 2016;167(5):1170–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma W, Ay F, Lee C, Gulsoy G, Deng X, Cook S, et al. Fine-scale chromatin interaction maps reveal the cis-regulatory landscape of human lincRNA genes. Nat Methods. 2015;12(1):71–8.

    Article  CAS  PubMed  Google Scholar 

  • Ma T, Chen L, Shi M, Niu J, Zhang X, Yang X, et al. Developing novel methods to image and visualize 3D genomes[J]. Cell Biol Toxicol. 2018;34(5):367–380. https://doi.org/10.1007/s10565-018-9427-z.

  • Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, et al. A chromosome conformation capture ordered sequence of the barley genome. Nature. 2017;544(7651):427–33.

    Article  CAS  PubMed  Google Scholar 

  • Mateoslangerak J, Bohn M, De Leeuw WC, Giromus O, Manders EMM, Verschure PJ, et al. Spatially confined folding of chromatin in the interphase nucleus. Proc Natl Acad Sci U S A. 2009;106(10):3812–7.

    Article  Google Scholar 

  • Merelli I, Tordini F, Drocco M, Aldinucci M, Lio P, Milanesi L. Integrating multi-omic features exploiting chromosome conformation capture data. Front Genet. 2015;6(40):40.

    PubMed  PubMed Central  Google Scholar 

  • Mifsud B, Tavarescadete F, Young AN, Sugar R, Schoenfelder S, Ferreira L, et al. Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat Genet. 2015;47(6):598–606.

    Article  CAS  PubMed  Google Scholar 

  • Mishra A, Hawkins RD. Three-dimensional genome architecture and emerging technologies: looping in disease. Genome Med. 2017;9(1):87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mumbach MR, Rubin AJ, Flynn RA, Dai C, Khavari PA, Greenleaf WJ, et al. HiChIP: efficient and sensitive analysis of protein-directed genome architecture[J]. Nat Methods. 2016;13(11):919–922. https://doi.org/10.1038/nmeth.3999.

  • Munkel C, Langowski J. Chromosome structure predicted by A polymer model. Phys Rev E. 1998;57(5):5888–96.

    Article  CAS  Google Scholar 

  • Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W, et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature. 2013;502(7469):59–64.

    Article  CAS  PubMed  Google Scholar 

  • Nagano T, Lubling Y, Yaffe E, Wingett SW, Dean W, Tanay A, et al. Single-cell Hi-C for genome-wide detection of chromatin interactions that occur simultaneously in a single cell. Nat Protoc. 2015a;10(12):1986–2003.

    Article  CAS  PubMed  Google Scholar 

  • Nagano T, Varnai C, Schoenfelder S, Javierre B, Wingett SW, Fraser P. Comparison of Hi-C results using in-solution versus in-nucleus ligation. Genome Biol. 2015b;16(1):175.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagano T, Lubling Y, Varnai C, Dudley C, Leung W, Baran Y, et al. Cell-cycle dynamics of chromosomal organization at single-cell resolution. Nature. 2017;547(7661):61–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novo CL, Javierre B, Cairns J, Segondspichon A, Wingett SW, Freirepritchett P, et al. Long-range enhancer interactions are prevalent in mouse embryonic stem cells and are reorganized upon pluripotent state transition. Cell Rep. 2018;22(10):2615–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ou HD, Phan S, Deerinck TJ, Thor A, Ellisman MH, Shea CCO. ChromEMT: visualizing 3D chromatin structure and compaction in interphase and mitotic cells. Science. 2017;357(6349):eaag0025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pancaldi V, Carrillodesantapau E, Javierre BM, Juan D, Fraser P, Spivakov M, et al. Integrating epigenomic data and 3D genomic structure with a new measure of chromatin assortativity. Genome Biol. 2016;17(1):152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papantonis A, Cook PR. Genome architecture and the role of transcription. Curr Opin Cell Biol. 2010;22(3):271–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perichupkes D, Meuleman W, Pagie L, Bruggeman SWM, Solovei I, Brugman W, et al. Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol Cell. 2010;38(4):603–13.

    Article  CAS  Google Scholar 

  • Phillipscremins JE, Sauria ME, Sanyal A, Gerasimova T, Lajoie BR, Bell JSK, et al. Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell. 2013;153(6):1281–95.

    Article  CAS  Google Scholar 

  • Quinodoz SA, Ollikainen N, Tabak B, Palla A, Schmidt JM, Detmar E, et al. Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus. Cell. 2018;174:744–757.e24. https://doi.org/10.1016/j.cell.2018.05.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramani V, Cusanovich DA, Hause RJ, Ma W, Qiu R, Deng X, et al. Mapping 3D genome architecture through in situ DNase Hi-C. Nat Protoc. 2016;11(11):2104–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramani V, Deng X, Qiu R, Gunderson KL, Steemers FJ, Disteche CM, et al. Massively multiplex single-cell Hi-C. Nat Methods. 2017;14(3):263–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao SSP, Huntley M, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. 2014;159(7):1665–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Remeseiro S, Hornblad A, Spitz F. Gene regulation during development in the light of topologically associating domains. Wiley Interdiscip Rev Dev Biol. 2016;5(2):169–85.

    Article  CAS  PubMed  Google Scholar 

  • Rowley MJ, Nichols MH, Lyu X, Andokuri M, Ism R, Hermetz K, et al. Evolutionarily conserved principles predict 3D chromatin organization. Mol Cell. 2017;67(5):837–852.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudan MV, Barrington C, Henderson S, Ernst C, Odom DT, Tanay A, et al. Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture. Cell Rep. 2015;10(8):1297–309.

    Article  CAS  Google Scholar 

  • Schmitt AD, Hu M, Jung I, Xu Z, Qiu Y, Tan CL, et al. A compendium of chromatin contact maps reveals spatially active regions in the human genome. Cell Rep. 2016a;17(8):2042–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt AD, Hu M, Ren B. Genome-wide mapping and analysis of chromosome architecture. Nat Rev Mol Cell Biol. 2016b;17(12):743–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoenfelder S, Sexton T, Chakalova L, Cope NF, Horton A, Andrews S, et al. Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat Genet. 2010;42(1):53–61.

    Article  CAS  PubMed  Google Scholar 

  • Selvaraj S, Dixon JR, Bansal V, Ren B. Whole-genome haplotype reconstruction using proximity-ligation and shotgun sequencing. Nat Biotechnol. 2013;31(12):1111–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Servant N, Varoquaux N, Lajoie BR, Viara E, Chen C, Vert J, et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 2015;16(1):259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sexton T, Cavalli G. The role of chromosome domains in shaping the functional genome. Cell. 2015;160(6):1049–59.

    Article  CAS  PubMed  Google Scholar 

  • Sexton T, Yaffe E, Kenigsberg E, Bantignies F, Leblanc B, Hoichman M, et al. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell. 2012;148(3):458–72.

    Article  CAS  PubMed  Google Scholar 

  • Shao Y, Lu N, Wu Z, Cai C, Wang S, Zhang LL, et al. Creating a functional single-chromosome yeast. Nature. 2018;560:331–5.

    Article  CAS  PubMed  Google Scholar 

  • Simonis M, Klous P, Splinter E, Moshkin YM, Willemsen R, De Wit E, et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet. 2006;38(11):1348–54.

    Article  CAS  PubMed  Google Scholar 

  • Smallwood A, Ren B. Genome organization and long-range regulation of gene expression by enhancers. Curr Opin Cell Biol. 2013;25(3):387–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stadhouders R, Vidal E, Serra F, Stefano BD, Dily FL, Quilez J, et al. Transcription factors orchestrate dynamic interplay between genome topology and gene regulation during cell reprogramming. Nat Genet. 2018;50(2):238–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stamatoyannopoulos JA, Snyder M, Hardison RC, Ren B, Gingeras TR, Gilbert DM, et al. An encyclopedia of mouse DNA elements (mouse ENCODE). Genome Biol. 2012;13(8):418.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stevens TJ, Lando D, Basu S, Atkinson L, Cao Y, Lee SF, et al. 3D structures of individual mammalian genomes studied by single-cell Hi-C. Nature. 2017;544(7648):59–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szalaj P, Plewczynski D. Three-dimensional organization and dynamics of the genome[J]. Cell Biol Toxicol. 2018;34:381–404. https://doi.org/10.1007/s10565-018-9428-y.

  • Tan L, Xing D, Chang C, Li H, Xie X. Three-dimensional genome structures of single diploid human cells. Science. 2018;361(6405):924–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulianov SV, Tachibanakonwalski K, Razin SV. Single-cell Hi-C bridges microscopy and genome-wide sequencing approaches to study 3D chromatin organization. BioEssays. 2017;39(10):1700104.

    Article  CAS  Google Scholar 

  • Uuskulareimand L, Hou H, Samavarchitehrani P, Rudan MV, Liang M, Medinarivera A, et al. Topoisomerase II beta interacts with cohesin and CTCF at topological domain borders. Genome Biol. 2016;17(1):182.

    Google Scholar 

  • Walter J, Schermelleh L, Cremer M, Tashiro S, Cremer T. Chromosome order in HeLa cells changes during mitosis and early G1, but is stably maintained during subsequent interphase stages. J Cell Biol. 2003;160(5):685–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Fan C, Zheng Y, Li C. Dynamic chromatin accessibility modeled by Markov process of randomly-moving molecules in the 3D genome. Nucleic Acids Res. 2017;45(10):85.

    Article  CAS  Google Scholar 

  • Wang Y, Song F, Zhang B, Zhang L, Xu J, Kuang D, et al. The 3D genome browser: a web-based browser for visualizing 3D genome organization and long-range chromatin interactions. [journal article]. Genome Biology. 2018;19(1):151. https://doi.org/10.1186/s13059-018-1519-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wingett SW, Ewels P, Furlanmagaril M, Nagano T, Schoenfelder S, Fraser P, et al. HiCUP: pipeline for mapping and processing Hi-C data. F1000Research. 2015;4:1310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu M, Ren B. The three-dimensional organization of mammalian genomes. Annu Rev Cell Dev Biol. 2017;33(1):265–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue F, Cheng Y, Breschi A, Vierstra J, Wu W, Ryba T, et al. A comparative encyclopedia of DNA elements in the mouse genome. Nature. 2014;515(7527):355–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan Y, Mariani L, Barozzi I, Schulz EG, Blüthgen N, Stadler M, et al. Reciprocal insulation analysis of Hi-C data shows that TADs represent a functionally but not structurally privileged scale in the hierarchical folding of chromosomes. Genome Res. 2017;27(3):479–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Xiang Y, Yin Q, Du Z, Peng X, Wang Q, et al. Dynamic epigenomic landscapes during early lineage specification in mouse embryos. Nat Genet. 2018;50(1):96–105.

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Tavoosidana G, Sjolinder M, Gondor A, Mariano P, Wang S, et al. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet. 2006;38(11):1341–7.

    Article  CAS  PubMed  Google Scholar 

  • Zheng M, Tian SZ, Maurya R, Lee B, Kim M, Capurso D, et al. Multiplex chromatin interaction analysis with single-molecule precision. bioRxiv. 2018. https://doi.org/10.1101/252049.

  • Zhou X, Lowdon RF, Li D, Lawson HA, Madden PAF, Costello JF, et al. Exploring long-range genome interactions using the WashU epigenome browser. Nat Methods. 2013;10(5):375–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The present paper was supported by the Thousand Talents Plan for Young Professionals (Y.Z.), the Agricultural Science and Technology Innovation Program, the Fundamental Research Funds for Central Non-profit Scientific Institution (Y2017CG26), the Agricultural Science and Technology Innovation Program Cooperation and Innovation Mission (CAAS-XTCX2016001-3), and the Elite Young Scientists Program of CAAS (CAASQNYC-KYYJ-41).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yubo Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, S., Zhang, Y. Deciphering Hi-C: from 3D genome to function. Cell Biol Toxicol 35, 15–32 (2019). https://doi.org/10.1007/s10565-018-09456-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-018-09456-2

Keywords

Navigation