Skip to main content
Log in

Early gene expression in Pseudomonas fluorescens exposed to a polymetallic solution

  • Original Research
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

The molecular response of Pseudomonas fluorescens cells exposed to a mixture of heavy metals remains largely unknown. Here, we studied the temporal changes in the early gene expression of P. fluorescens cells exposed to three doses of a polymetallic solution over two exposure times, through the application of a customized cDNA microarray. At the lowest metal dose (MD/4), we observed a repression of the Hsp70 chaperone system, MATE and MFS transporters, TonB membrane transporter and histidine kinases, together with an overexpression of metal transport (ChaC, CopC), chemotaxis and glutamine synthetase genes. At the intermediate metal dose (MD), several amino acid transporters, a response regulator (CheY), a TonB-dependent receptor and the mutT DNA repair gene were repressed; by contrast, an overexpression of genes associated with the antioxidative stress system and the transport of chelates and sulfur was observed. Finally, at the highest metal dose (4MD), a repression of genes encoding metal ion transporters, drug resistance and alginate biosynthesis was found, together with an overexpression of genes encoding antioxidative proteins, membrane transporters, ribosomal proteins, chaperones and proteases. It was concluded that P. fluorescens cells showed, over exposure time, a highly complex molecular response when exposed to a polymetallic solution, involving mechanisms related with chemotaxis, signal transmission, membrane transport, cellular redox state, and the regulation of transcription and ribosomal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguilar-Barajas E, Ramírez-Díaz MI, Riveros-Rosas H, Cervantes C. Heavy metal resistance in pseudomonads. In: Ramos JL, Filloux A, editors. Pseudomonas, vol. 6: molecular microbiology, infection and biodiversity. Dordrecht: Springer; 2010. p. 255–82.

    Chapter  Google Scholar 

  • Anantharamn V, Aravind L. Evolutionary history, structural features and biochemical diversity of the NlpC/P60 superfamily of enzymes. Genome Biol. 2003;4:R11.

    Article  Google Scholar 

  • Andersen CL, Jensen JL, Ørntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004;64:5245–50.

    Article  CAS  PubMed  Google Scholar 

  • Aryee M, Gutierrez-Pabello J, Kramnik I, Maiti T, Quackenbush J. An improved empirical bayes approach to estimating differential gene expression in microarray time-course data: BETR (Bayesian Estimation of Temporal Regulation). BMC Bioinform. 2009;10:409. doi:10.1186/1471-2105-10-409.

    Article  Google Scholar 

  • Bi S, Lai L. Bacterial chemoreceptors and chemoeffectors. Cell Mol Life Sci. 2014;1-18. doi:10.1007/s00018-014-1770-5.

  • Bolstad BM, Irizarry RA, Åstrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003;19:185–93.

    Article  CAS  PubMed  Google Scholar 

  • Braz VS, Marques MV. Genes involved in cadmium resistance in Caulobacter crescentus. FEMS Microbiol Lett. 2005;251:289–95.

    Article  CAS  PubMed  Google Scholar 

  • Butala M, Žgur-Bertok D, Busby SJW. The bacterial LexA transcriptional repressor. Cell Mol Life Sci. 2009;1:82–93.

    Article  Google Scholar 

  • Collet J-F, Bardwell JCA. Oxidative protein folding in bacteria. Mol Microbiol. 2002;44:1–8.

    Article  CAS  PubMed  Google Scholar 

  • Dubern J-F, Lagendijk EL, Lugtenberg BJJ, Bloemberg GV. The heat shock genes dnaK, dnaJ and grpE are involved in regulation of putisolvin biosynthesis in Pseudomonas putida PCL1445. J Bacteriol. 2005;187:5967–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Forchhammer K. Glutamine signalling in bacteria. Front Biosci. 2007;12:358–70.

    Article  CAS  PubMed  Google Scholar 

  • Gadd GM. Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology. 2010;156:609–43.

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Sagasti MT, Becerril JM, Martín I, Epelde L, Garbisu C. cDNA microarray assessment of early gene expression profiles in Escherichia coli cells exposed to a mixture of heavy metals. Cell Biol Toxicol. 2014;30:207–32.

    Article  PubMed  Google Scholar 

  • Hu P, Brodie EL, Suzuki Y, McAdams HH, Andersen GL. Whole-genome transcriptional analysis of heavy metal stresses in Caulobacter crescentus. J Bacteriol. 2005;187:8437–49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Igarashi K, Kashiwagi K. Characteristics of cellular polyamine transport in prokaryotes and eukaryotes. Plant Physiol Biochem. 2010;48:506–12.

    Article  CAS  PubMed  Google Scholar 

  • Jain S, Bhatt A. Proteomic analysis of diversified extremophilic strains of Pseudomonas in the presence of cadmium. Agric Res. 2013;2:354–9.

    Article  CAS  Google Scholar 

  • Kiliç NK, Stensballe A, Otzen DE, Dönmez G. Proteomic changes in response to chromium (VI) toxicity in Pseudomonas aeruginosa. Bioresour Technol. 2010;7:2134–40.

    Article  Google Scholar 

  • Krell T, Lacal J, Busch A, Silva-Jiménez H, Guazzaroni M-E, Ramos JL. Bacterial sensor kinases: diversity in the recognition of environmental signals. Annu Rev Microbiol. 2010;64:539–59.

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Floyd JT, He G, Varela MF. Bacterial antimicrobial efflux pumps of the MFS and MATE transporter families: a review. Recent Res Devel Antimicrob Agents Chemother. 2013;7:1–21.

    Google Scholar 

  • Lee JH, Kim YG, Cho MH, Lee J. ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production. Microbiol Res. 2014;169:888–96.

    Article  CAS  PubMed  Google Scholar 

  • Lemire J, Mailloux R, Auger C, Whalen D, Appanna VD. Pseudomonas fluorescens orchestrates a fine metabolic-balancing act to counter aluminium toxicity. Environ Microbiol. 2010;12:1384–90.

    CAS  PubMed  Google Scholar 

  • Leonhardt N, Kwak JM, Robert N, Waner D, Leonhardt G, Schroeder JI. Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell. 2004;16:596–615.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li K, Pidatala RR, Ramakrishna W. Mutational, proteomic and metabolomic analysis of a plant growth promoting copper-resistant Pseudomonas spp. FEMS Microbiol Lett. 2012;335:140–8.

    Article  CAS  PubMed  Google Scholar 

  • Llamas MA, Bitter W. Cell-surface signalling in Pseudomonas. In: Ramos J-L, Filloux A, editors. Pseudomonas. volume 6: molecular microbiology, infection and biodiversity. Netherlands: Springer; 2010. p. 59–95.

    Chapter  Google Scholar 

  • Lubelski J, Konings WN, Driessen AJM. Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteria. Microbiol Mol Biol Rev. 2007;71:463–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma Z, Jacobsen FE, Giedroc DP. Metal transporters and metal sensors: how coordination chemistry controls bacterial metal homeostasis. Chem Rev. 2009;109:4644–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martínez JL, Sánchez MB, Martínez-Solano L, Hernández A, Garmendia L, Fajardo A, et al. Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems. FEMS Microbiol Rev. 2009;33:430–49.

    Article  PubMed  Google Scholar 

  • Mascher T, Helmann JD, Under G. Stimulus perception in bacterial signal-transducting histidine kinases. Microbiol Mol Biol Rev. 2006;70:910–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miller CD, Pettee B, Zhang C, Pabst M, McLean JE, Anderson AJ. Copper and cadmium: responses in Pseudomonas putida KT2440. Lett Appl Microbiol. 2009;49:775–83.

    Article  CAS  PubMed  Google Scholar 

  • Moore CM, Gaballa A, Hui M, Ye RW, Helmann JD. Genetic and physiological responses of Bacillus subtilis to metal ion stress. Mol Microbiol. 2005;57:27–40.

    Article  CAS  PubMed  Google Scholar 

  • Morey JS, Ryan JC, Van Dolah FM. Microarray validation: factors influencing correlation between oligonucleotide microarrays and real-time PCR. Biol Proced Online. 2006;8:175–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nies DH. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev. 2003;27:313–39.

    Article  CAS  PubMed  Google Scholar 

  • Omote H, Hiasa M, Matsumoto T, Otsuka M, Moriyama Y. The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Trends Pharmacol Sci. 2006;27:587–93.

    Article  CAS  PubMed  Google Scholar 

  • Pagès D, Sánchez L, Conrad S, Gidrol X, Fekete A, Schmitt-Kopplin P, et al. Exploration of intraclonal adaptation mechanisms of Pseudomonas brassicacearum facing cadmium toxicity. Environ Microbiol. 2007;9:2820–35.

    Article  PubMed Central  PubMed  Google Scholar 

  • Pfaffl MW. Relative quantification. real time qPCR. New York: Taylor & Francis Group; 2006. p. 63–82.

    Google Scholar 

  • Poirier I, Kuhn L, Caplat C, Hammann P, Bertrand M. The effect of cold stress on the proteome of the marine bacterium Pseudomonas fluorescens BA3SM1 and its ability to cope with metal excess. Aquat Toxicol. 2014;157:120–33.

    Article  CAS  PubMed  Google Scholar 

  • Potvin E, Sanschagrin F, Levesque RC. Sigma factors in Pseudomonas aeruginosa. FEMS Microbiol Rev. 2007;32:38–55.

    Article  PubMed  Google Scholar 

  • Reva ON, Weinel C, Weinel M, Böhm K, Stjepandic D, Hoheisel JD, et al. Functional genomics of stress response in Pseudomonas putida KT2440. J Bacteriol. 2006;188:4079–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Romero P, Karp P. PseudoCyc, a pathway-genome database for Pseudomonas aeruginosa. J Mol Microbiol Biotechnol. 2003;5:230–9.

    Article  CAS  PubMed  Google Scholar 

  • Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol. 2000;132:365–86.

    CAS  PubMed  Google Scholar 

  • Saha R, Saha N, Donofrio RS, Bestervelt LL. Microbial siderophores: a mini review. J Basic Microbiol. 2013;53:303–17.

    Article  PubMed  Google Scholar 

  • Sarma B, Acharya C, Joshi SR. Pseudomonads: a versatile bacterial group exhibiting dual resistance to metals and antibiotics. Afr J Microbiol Res. 2010;4:2828–35.

    Google Scholar 

  • Schalk IJ, Hannauer M, Braud A. New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol. 2011;13:2844–54.

    Article  CAS  PubMed  Google Scholar 

  • Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3:1101–8.

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Sundaram CS, Luthra PM, Singh Y, Sirdeshmukh R, Gade WN. Role of proteins in resistance mechanism of Pseudomonas fluorescens against heavy metal induced stress with proteomics approach. J Biotechnol. 2006;126:374–82.

    Article  CAS  PubMed  Google Scholar 

  • Sharma SK, Goloubinoff P, Christen P. Heavy metal ions are potent inhibitors of protein folding. Biochem Biophys Res Commun. 2008;372:341–5.

    Article  CAS  PubMed  Google Scholar 

  • Silver S, Phung LT. A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J Ind Microbiol Biot. 2005;32:587–605.

    Article  CAS  Google Scholar 

  • Soukas A, Cohen P, Socci ND, Friedman JM. Leptin-specific patterns of gene expression in white adipose tissue. Genes Dev. 2000;14:963–80.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Teitzel GM, Geddie A, De Long SK, Kiristis MJ, Whiteley M, Parsek MR. Survival and growth in the presence of elevated copper: transcriptional profiling of copper-stressed Pseudomonas aeruginosa†. J Bacteriol. 2006;188:7242–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tenaillon O, Skurnik D, Picard B, Denamur E. The population genetics of commensal Escherichia coli. Nat Rev Microbiol. 2010;8:207–17.

    Article  CAS  PubMed  Google Scholar 

  • Thaden JT, Lory S, Gardner TS. Quorum-sensing regulation of a copper toxicity system in Pseudomonas aeruginosa. J Bacteriol. 2010;192:2557–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paene A, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:research0034.0031-11.

  • Varivarn K, Champa LA, Silby MW, Robleto EA. Colonization strategies of Pseudomonas fluorescens Pf0-1: activation of soil-specific genes important for diverse and specific environments. BMC Microbiol. 2013;13:92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vetting MW, de Carvalho LPS, Yu M, Hegde SS, Magnet S, Roderick SL, et al. Structure and functions of the GNAT superfamily of acetyltransferases. Arch Biochem Biophys. 2005;1:212–26.

    Article  Google Scholar 

  • Wasi S, Jeelani G, Ahmad M. Biochemical characterization of a multiple heavy metal, pesticides and phenol resistant Pseudomonas fluorescens strain. Chemosphere. 2008;71:1348–55.

    Article  CAS  PubMed  Google Scholar 

  • Wasi S, Tabrez S, Ahmad M. Use of Pseudomonas spp. for the bioremediation of environmental pollutants: a review. Environ Monit Assess. 2013;185:8147–55.

    Article  PubMed  Google Scholar 

  • Winsor GL, Lam DK, Fleming L, Lo R, Whiteside MD, Yu NY, et al. Pseudomonas genome database: improved comparative analysis and population genomics capability for Pseudomonas genomes. Nucleic Acids Res. 2011;39(Database issue):D596–600.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yeung KY, Haynor DR, Ruzzo WL. Validating clustering for gene expression data. Bioinformatics. 2001;17:309–18.

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Rudd KE. EcoGene 3.0. Nucleic Acids Res. 2013;41:D613–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been financially supported by 7/12/TK/2009/3 LURCHIP (Biscay County Council) and MINECO AGL2012-39715-CO3-01/02 projects. M.T. Gómez-Sagasti is the recipient of a Fellowship for Recent Doctors, University of the Basque Country. Technical support by Javier Etxebarria and Amaia García from GAIKER is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María T. Gómez-Sagasti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Sagasti, M.T., Becerril, J.M., Epelde, L. et al. Early gene expression in Pseudomonas fluorescens exposed to a polymetallic solution. Cell Biol Toxicol 31, 39–81 (2015). https://doi.org/10.1007/s10565-015-9294-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-015-9294-9

Keywords

Navigation