Skip to main content

Advertisement

Log in

Neurotranmission systems as targets for toxicants: a review

  • Review Article
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Neurotransmitters are chemicals that transmit impulses from one nerve to another or from nerves to effector organs. Numerous neurotransmitters have been described in mammals, amongst them acetylcholine, amino acids, amines, peptides and gases. Toxicants may interact with various parts of neurotransmission systems, including synthetic and degradative enzymes, presynaptic vesicles and the specialized receptors that characterize neurotransmission systems. Important toxicants acting on the cholinergic system include the anticholinesterases (organophosphates and carbamates) and substances that act on receptors such as nicotine and the neonicotinoid insecticides, including imidacloprid. An important substance acting on the glutamatergic system is domoic acid, responsible for amnesic shellfish poisoning. 4-Aminobutyric acid (GABA) and glycine are inhibitory neurotransmitters and their antagonists, fipronil (an insecticide) and strychnine respectively, are excitatory. Abnormalities of dopamine neurotransmission occur in Parkinson’s disease, and a number of substances that interfere with this system produce Parkinsonian symptoms and clinical signs, including notably 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, which is the precursor of 1-methyl-4-phenylpyridinium. Fewer substances are known that interfere with adrenergic, histaminergic or seroninergic neurotransmission, but there are some examples. Among peptide neurotransmission systems, agonists of opioids are the only well-known toxic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. International Union of Pure and Applied Chemistry name.

  2. A term used to mean phosphorylation and phosphonylation without distinction.

References

  • Abramson SN, Radic Z, Manker D, Faulkner DJ, Taylor P. Onchidal: a naturally occurring irreversible inhibitor of acetylcholinesterase with a novel mechanism of action. Mol Pharmacol. 1989;36:349–54.

    CAS  PubMed  Google Scholar 

  • Adamo RJ, Ratner A. Monosodium glutamate: lack of effects on brain and reproductive function in rats. Science. 1970;169:673.

    CAS  PubMed  Google Scholar 

  • Aguayo LG, van Zundert B, Tapia JC, Carrasco MA, Alvarez FJ. Changes on the properties of glycine receptors during neuronal development. Brain Res Brain Res Rev. 2004;47:33–45.

    CAS  PubMed  Google Scholar 

  • Ahlbom J, Fredriksson A, Eriksson P. Exposure to an organophosphate (DFP) during a defined period in neonatal life induces permanent changes in brain muscarinic receptors and behaviour in adult mice. Brain Res. 1995;677:13–9.

    CAS  PubMed  Google Scholar 

  • Ahnert-Hilger G, Münster-Wandowski A, Höltje M. Synaptic vesicle proteins: targets and routes for botulinum neurotoxins. Curr Top Microbiol Immunol. 2013;364:159–77.

    PubMed  Google Scholar 

  • Albuquerque EX, Schwarcz R. Kynurenic acid as an antagonist of α7 nicotinic acetylcholine receptors in the brain: facts and challenges. Biochem Pharmacol. 2013;85:1027–32.

    CAS  PubMed  Google Scholar 

  • Aldridge WN. Some properties of specific cholinesterase with particular reference to the mechanism of inhibition of diethyl p-nitrophenyl thiophosphate (E605) and analogues. Biochem J. 1950;46:451–60.

    CAS  PubMed  Google Scholar 

  • Aldridge WN, Reiner E. Enzyme inhibitors as substrates: interactions of esterases with esters of organophosphorus and carbamic acids. Amsterdam: North-Holland Publishing; 1972.

    Google Scholar 

  • Aráoz R, Vilariño N, Botana LM, Molgó J. Ligand-binding assays for cyanobacterial neurotoxins targeting cholinergic receptors. Anal Bioanal Chem. 2010;397:1695–704.

    PubMed  Google Scholar 

  • Ariens AT, Wolthuis OL, van Bentham RMJ. Reversible necrosis at the end plate region in striated muscles of the rat poisoned with cholinesterase inhibitors. Experientia. 1969;1:57–9.

    Google Scholar 

  • Balech E. The genus Alexandrium or Gonyaulax of the tamarensis group. In: Anderson DM, White AW, Baden DG, editors. Toxic dinoflagellates. New York: Elsevier; 1985. p. 33–8.

    Google Scholar 

  • Barbeau A. Manganese and extrapyramidal disorders (a critical review and tribute to Dr. George C. Cotzias). Neurotoxicology. 1984;5:13–35.

    CAS  PubMed  Google Scholar 

  • Barlow BK, Cory-Slechta DA, Richfield EK, Thiruchelvam M. The gestational environment and Parkinson’s disease: evidence for neurodevelopmental origins of a neurodegenerative disorder. Reprod Toxicol. 2007;23:457–70.

    CAS  PubMed  Google Scholar 

  • Bellinger D, ed. Human developmental neurotoxicology. New York: Taylor and Francis; 2006

  • Betarbet R, Shere TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nature Neurosci. 2000;3:1301–6.

    CAS  PubMed  Google Scholar 

  • Beyreuther K, Biesalski HK, Fernstrom JD, Grimm P, Hammes WP, Heinemann U, et al. Consensus meeting: monosodium glutamate—an update. Eur J Clin Nutr. 2007;61:304–13.

    CAS  PubMed  Google Scholar 

  • Binder LS. Acute arthropod envenomation. Incidence, clinical features and management. Med Toxicol Adverse Drug Exp. 1989;4:163–73.

    CAS  PubMed  Google Scholar 

  • Birks J, Harvey RJ. Donepezil for dementia due to Alzheimer’s disease. Cochrane Database Syst Rev. 2006;1, CD001190.

  • Blasi J, Chapman ER, Link E, Binz T, Yamasaki S, De Camilli P, et al. Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature. 1993;365:160–3.

    CAS  PubMed  Google Scholar 

  • Bowman WC. Neuromuscular block. Br J Pharmacol. 2006;147 Suppl 1:S277–86.

    CAS  PubMed  Google Scholar 

  • Bowman WC, Bowman A, Bowman A. Dictionary of pharmacology. Oxford: Blackwell Scientific Publications; 1986.

    Google Scholar 

  • Bright JE, Inns RH, Tuckwell NJ, Griffiths GD, Marrs TC. A histochemical study of changes observed in the mouse diaphragm after organophosphate poisoning. Hum Exp Toxicol. 1991;10:9–14.

    CAS  PubMed  Google Scholar 

  • Brown JH, Laikin N. Muscarinic receptor agonists and antagonists. In: Brunton L, Chabner BA, Knollman B, editors. Goodman and Gilman’s the pharmacological basis of therapeutics. New York: McGraw-Hill Book Company; 2011. p. 219–38.

    Google Scholar 

  • Burgen ASV, Dickens F, Zatman LJ. The action of botulinum toxin on the neuro-muscular junction. J Physiol. 1949;109:10–24.

    CAS  PubMed  Google Scholar 

  • Burns CJ, McIntosh LJ, Mink PJ, Jurek AM, Li AA. Pesticide exposure and neurodevelopmental outcomes: review of the epidemiologic and animal studies. J Toxicol Environ Health B Crit Rev. 2013;16:127–283.

    CAS  PubMed  Google Scholar 

  • Changeux JP, Kasai M, Lee CY. Use of a snake venom toxin to characterize the cholinergic receptor protein. Proc Natl Acad Sci U S A. 1970;67:1241–7.

    CAS  PubMed  Google Scholar 

  • Clark RF, Williams SR, Nordt SP, Manoguerra AS. A review of selected seafood poisonings. Undersea Hyperb Med. 1999;26:175–84.

    CAS  PubMed  Google Scholar 

  • COT. Adverse reactions to food and food ingredients. Report of the Committee on Toxicity of Products in Food, Consumer Products and the Environment. London, UK: Department of Health; 2000. http://cot.food.gov.uk/pdfs/adversereactionstofood.pdf Accessed 20 Aug 2013

  • COT. Organophosphates. Report of the Committee on Toxicity of Products in Food, Consumer Products and the Environment. London, UK: Department of Health; 1999. http://cot.food.gov.uk/cotreports/cotwgreports/organophosphates Accessed 20 Aug 2013

  • Cotzias GC. Levodopa, manganese, and degenerations of the brain. Harvey Lect. 1974;68:115–47.

    CAS  PubMed  Google Scholar 

  • Cutler D. Cell biology. Fast forward to fusion. Nature. 1993;364:287–388.

    CAS  PubMed  Google Scholar 

  • de la Riva GT, Johnson CK, Gulland FM, Langlois GW, Heyning JE, Rowles TK, et al. Association of an unusual marine mammal mortality event with Pseudo-nitzschia spp. blooms along the southern California coastline. J Wildl Dis. 2009;45:109–21.

    PubMed  Google Scholar 

  • De Reuck J, Willems J. Acute parathion poisoning: myopathic changes in the diaphragm. J Neurol. 1975;208:309–13.

    PubMed  Google Scholar 

  • D’Hulst C, Atack JR, Kooy RF. The complexity of the GABAA receptor shapes unique pharmacological profiles. Drug Discov Today. 2009;14:866–75.

    PubMed  Google Scholar 

  • Dobelis P, Varnell A, Staley KJ, Cooper DC. Nicotinic α7 acetylcholine receptor-mediated currents are not modulated by the tryptophan metabolite kynurenic acid in adult hippocampal interneurons. 2011; 6277.1. http://www.neuro-cloud.net/nature-precedings/dobelis/ Accessed 20 Aug 2013.

  • Dutertre S, Becker CM, Betz H. Inhibitory glycine receptors: an update. J Biol Chem. 2012;287:40216–23.

    CAS  PubMed  Google Scholar 

  • EFSA. Conclusion on the peer review of the pesticide risk assessment for bees for the active substance imidacloprid. EFSA J. 2013;11:3068–123. http://www.efsa.europa.eu/en/efsajournal/pub/3068.htm Accessed 20 Aug 2013

  • EFSA. Scientific opinion: marine biotoxins in shellfish–domoic acid. 2nd July 2009, EFSA J. 2009;1181:1–61. http://www.efsa.europa.eu/fr/scdocs/doc/1181.pdf Accessed 20 Aug 2013.

  • Eriksson P, Ankarberg E, Fredriksson A. Exposure to nicotine during a defined period in neonatal life induces permanent changes in brain nicotinic receptors and in behaviour of adult mice. Brain Res. 2000;853:41–8.

    CAS  PubMed  Google Scholar 

  • European Commission (2000). Review report for the active substance lindane. Brussels, Belgium: Directorate General for Agriculture 6525/VI/99-rev.6. DG VI-B.II-1 13 July 2000.http://ec.europa.eu/food/plant/protection/evaluation/existactive/list1-21_en.pdf. Accessed 21 Aug 2013

  • Eyer P. Neuropsychopathological changes by organophosphorus compounds—a review. Hum Exper Toxicol. 1995;14:857–64.

    CAS  Google Scholar 

  • FAO/WHO. Pesticide residues in food—1998. Toxicological evaluations. Joint meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group. Rome, Italy, 21–30 September 1998. Geneva, Switzerland: World Health Organization;1999.

  • FAO/WHO. Pesticide residues in food—2003 Evaluations Part II toxicological. Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group, Geneva, Switzerland, 15–24 September 2003. Geneva, Switzerland: World Health Organization; 2005.

  • Filip M, Frankowska M, Zaniewska M, Gołda A, Przegaliński E. The serotonergic system and its role in cocaine addiction. Pharmacol Rep. 2005;57:685–700.

    CAS  PubMed  Google Scholar 

  • Finberg JP, Gillman K. Selective inhibitors of monoamine oxidase type B and the “cheese effect”. Int Rev Neurobiol. 2011;100:169–90.

    CAS  PubMed  Google Scholar 

  • Fisheries and Oceans Canada, Aqua info aquaculture notes. Amnesic shellfish poisoning: domoic acid production by Pseudo-nizschia diatoms, AIN 16 2004. Moncton, New Brunswick, Canada: Fisheries and Oceans Canada http://www.gov.pe.ca/photos/original/af_domoic_acid.pdf Accessed 21 Aug 2013

  • Fossom LH, Skolnick P. Chronic administration of a partial agonist at strychnine-insensitive glycine receptors: a novel experimental approach to the treatment of ischemias. J Neural Transm Suppl. 1997;49:235–44.

    CAS  PubMed  Google Scholar 

  • Fredriksson A, Fredriksson M, Eriksson P. Neonatal exposure to paraquat or MPTP induces permanent changes in striatum dopamine and behavior in adult mice. Toxicol Appl Pharmacol. 1993;122:258–64.

    CAS  PubMed  Google Scholar 

  • Freeman M. Reconsidering the effects of monosodium glutamate: a literature review. J Am Acad Nurse Pract. 2006;18:482–6.

    PubMed  Google Scholar 

  • Freestone PS, Chung KK, Guatteo E, Mercuri NB, Nicholson LF, Lipski J. Acute action of rotenone on nigral dopaminergic neurons—involvement of reactive oxygen species and disruption of Ca2+ homeostasis. Euro J Neurosci. 2009;30:1849–59.

    Google Scholar 

  • Freire C, Koifman S. Pesticide exposure and Parkinson’s disease: epidemiological evidence of association. Neurotoxicology. 2012;33:947–71.

    CAS  PubMed  Google Scholar 

  • Fukuto TR. Mechanism of action of organophosphorus and carbamate insecticides. Environ Health Perspect. 1990;87:245–54.

    CAS  PubMed  Google Scholar 

  • Fuxe K, Fredholm BB, Ogren SO, Agnati LF, Hökfelt T, Gustafsson JA. Ergot drugs and central monoaminergic mechanisms: a histochemical, biochemical and behavioral analysis. Fed Proc. 1978;37:2181–91.

    CAS  PubMed  Google Scholar 

  • Gao HM, Liu B, Hong JS. Critical role for microglial NADPH oxidase in rotenone-induced degeneration of dopaminergic neurons. J Neurosci. 2003;23:6181–7.

    CAS  PubMed  Google Scholar 

  • Ghadimi H, Kumar S. Current status of monosodium glutamate. Am J Clin Nutr. 1972;25:643–6.

    CAS  PubMed  Google Scholar 

  • Glynn P. Neural development and neurodegeneration: two faces of neuropathy target esterase. Progr Neurobiol. 2000;61:61–74.

    CAS  Google Scholar 

  • Guilarte TR. Manganese and Parkinson’s disease: a critical review and new findings. Cien Saude Colet. 2011;16:4549–66.

    PubMed  Google Scholar 

  • Gupta RC, Milatovic D. Toxicity of organophosphates and carbamates. In: Marrs TC, editor. Mammalian toxicology of insecticides. Cambridge: RSC Press; 2012. p. 104–36.

    Google Scholar 

  • Gupta RC, Patterson GT, Dettbarn W-D. Acute tabun toxicity; biochemical and histochemical consequences in brain and skeletal muscles of rats. Toxicology. 1987a;46:329–41.

    CAS  PubMed  Google Scholar 

  • Gupta RC, Patterson GT, Dettbarn W-D. Biochemical and histochemical alterations following acute soman intoxication in the rat. Toxicol Appl Pharmacol. 1987b;87:393–402.

    CAS  PubMed  Google Scholar 

  • He Y, Fekete A, Chen G, Harir M, Zhang L, Tong P, et al. Analytical approaches for an important shellfish poisoning agent: domoic acid. J Agric Food Chem. 2010;58:11525–33.

    CAS  PubMed  Google Scholar 

  • Heath AJW. Atropine in the management of anticholinesterase poisoning. In: Ballantyne B, Marrs TC, editors. Clinical and experimental toxicology of organophosphates and carbamates. Oxford: Butterworth-Heinemann; 1992. p. 543–54.

  • Heiser JM, Daya MR, Magnussen AR, Norton RL, Spyker DA, Allen DW, et al. Massive strychnine intoxication: serial blood levels in a fatal case. Toxicol Clin Toxicol. 1992;30:269–83.

    CAS  Google Scholar 

  • Heyes MP, Saito K, Crowley JS, Davis LE, Demitrack MA, Der M, et al. Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease. Brain. 1992;115:1249–73.

    PubMed  Google Scholar 

  • Hilton SE, Maradit H, Möller HJ. Serotonin syndrome and drug combinations: focus on MAOI and RIMA. Eur Arch Psychiatry Clin Neurosci. 1997;247:113–9.

    CAS  PubMed  Google Scholar 

  • Holtze M, Mickiené A, Atlas A, Lindquist L, Schwieler L. Elevated cerebrospinal fluid kynurenic acid levels in patients with tick-borne encephalitis. J Intern Med. 2012;272:394–401.

    CAS  PubMed  Google Scholar 

  • Hou M, Duan L, Slaughter MM. Synaptic inhibition by glycine acting at a metabotropic receptor in tiger salamander retina. J Physiol. 2008;586:2913–26.

    CAS  PubMed  Google Scholar 

  • Hughes JN, Knight R, Brown RFR, Marrs TC. Effects of experimental sarin intoxication on the morphology of the mouse diaphragm: a light and electron microscopical study. Int J Exp Path. 1991;72:195–209.

    CAS  Google Scholar 

  • Hung Y-M, Meier KH. Acute ®Confidor (imidacloprid-N-methyl pyrrolidone) insecticides intoxication with mimicking cholinergic syndrome. Toxicol Ind Health. 2005;21:137–40.

    CAS  Google Scholar 

  • Hung YM, Lin SL, Chou KJ, Chung HM. Imidacloprid-N-methyl pyrrolidine insecicides poisoning mimicking cholinergic syndrome. Clin Toxicol. 2006;44:771.

    Google Scholar 

  • Hungerford JM. Scombroid poisoning: a review. Toxicon. 2010;56:231–43.

    CAS  PubMed  Google Scholar 

  • Hyde EG, Carmichael WW. Anatoxin-a(s), a naturally occurring organophosphate, is an irreversible active site-directed inhibitor of acetylcholinesterase (EC 3.1.1.7). J Biochem Toxicol. 1991;6:195–201.

    CAS  PubMed  Google Scholar 

  • IEH. Organophosphorus agents: an evaluation of putative chronic effects in humans. Leicester: Institute for Environment and Health; 1998. http://www.cranfield.ac.uk/health/researchareas/environmenthealth/ieh/ieh%20publications/sr5.pdf Accessed 20 Aug 2013

  • IEH. Perinatal developmental neurotoxicity. IEH Report R4. Leicester, UK: Institute for Environment and Health; 1996. http://www.cranfield.ac.uk/health/researchareas/environmenthealth/ieh/ieh%20publications/exsumr4.pdf Accessed 20 Aug 2013

  • IEH. Pesticides and Parkinson’s disease—a critical review. IEH Report W21 October 2005. Leicester: Institute for Environment and Health; 2005. http://www.cranfield.ac.uk/health/researchareas/environmenthealth/ieh/ieh%20publications/w21.pdf Accessed 20 Aug 2013

  • Inns RH, Tuckwell NJ, Bright JE, Marrs TC. Histochemical demonstration of calcium accumulation in muscle fibres after experimental organophosphate poisoning. Human Exp Toxicol. 1990;9:245–50.

    CAS  Google Scholar 

  • IRAC. Insecticide Resistance Advisory Committee mode of action classification scheme. Version 7.2; 2012. http://www.irac-online.org/documents/moa-classification/?ext=pdf. Accessed 20 Aug 2013

  • IUPHAR database, 2013. International Union of Basic and Clinical Pharmacology. http://www.guidetopharmacology.org/GRAC/DatabaseSearchForward?searchString=neurotransmitters&searchCategories=allRec&species=none&type=all&order=rank&submit=Search+the+database and http://www.iuphar-db.org/DATABASE/ReceptorFamiliesForward?type=RECEPTOR both accessed 18th Aug 2013.

  • JECFA. Toxicological evaluation of certain food additives (prepared by the 31st meeting of JECFA). WHO Food Additives Series NO 22. Cambridge: Cambridge University Press; 1988.

  • Jeffery B, Barlow T, Moizer K, Paul S, Boyle C. Amnesic shellfish poison. Food Chem Toxicol. 2004;42:545–57.

    CAS  PubMed  Google Scholar 

  • Jenner P, Marsden CD. The actions of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in animals as a model of Parkinson’s disease. J Neural Transm. 1986;20(Suppl):11–39.

    CAS  Google Scholar 

  • Jin Z. Muscarine, imidazole, oxazole, and thiazole alkaloids. Nat Prod Rep. 2011;28:1143–91.

    CAS  PubMed  Google Scholar 

  • Jokanović M, Kosanović M, Brkić D, Vukomanović P. Organophosphate induced delayed polyneuropathy in man: an overview. Clin Neurol Neurosurg. 2011;113:7–10.

    PubMed  Google Scholar 

  • Kalgutkar AS, Dalvie DK, Castagnoli N, Taylor TJ. Interactions of nitrogen-containing xenobiotics with monoamine oxidase (MAO) isozymes A and B: SAR studies on MAO substrates and inhibitors. Chem Res Toxicol. 2001;14:1139–62.

    CAS  PubMed  Google Scholar 

  • Kalix P. The pharmacology of psychoactive alkaloids from ephedra and Catha. J Ethnopharmacol. 1991;32:201–8.

    CAS  PubMed  Google Scholar 

  • Karalliedde L, Baker D, Marrs TC. Organophosphate-induced intermediate syndrome: aetiology and the relationship with myopathy. Toxicol Rev. 2006;25:1–14.

    CAS  PubMed  Google Scholar 

  • Katz B. Nerve, muscle and synapse. New York: McGraw-Hill Book Company; 1966. p. 143–58.

    Google Scholar 

  • Kitchen I, Kelly M. Effect of perinatal lead treatment on morphine dependence in the adult rat. Neurotoxicology. 1993;14:125–9.

    CAS  PubMed  Google Scholar 

  • Kumar KP, Kumar SP, Nair GA. Risk assessment of the amnesic shellfish poison, domoic acid, on animals and humans. Environ Biol. 2009;30:319–25.

    CAS  Google Scholar 

  • Lawler HC. Turnover time of acetylcholinesterase. J Biol Chem. 1961;236:2296–301.

    CAS  PubMed  Google Scholar 

  • Lefebvre KA, Robertson A. Domoic acid and human exposure risks: a review. Toxicon. 2010;56:218–30.

    CAS  PubMed  Google Scholar 

  • Liebig J. Über Kynurensäure. Justus Liebigs Ann Chem. 1853;86:125–6.

    Google Scholar 

  • Liou JC, Kang KH, Chang LS, Ho SY. Mechanism of beta-bungarotoxin in facilitating spontaneous transmitter release at neuromuscular synapse. Neuropharmacology. 2006;51:671–80.

    CAS  PubMed  Google Scholar 

  • Loewe O. Über humorale Übertragbarkeit der Herznervenwirkung. 1. Pflügers Archiv. 1921;189:239–42.

  • Lotti M, Moretto A. Organophosphate-induced delayed polyneuropathy. Toxicol Rev. 2005;24:37–49.

    CAS  PubMed  Google Scholar 

  • Lotti M, Moretto A. Do carbamates cause polyneuropathy? Muscle Nerve. 2006;34:499–502.

    CAS  PubMed  Google Scholar 

  • Lucchini RG, Smith DR, Tjalkens RB. Manganese. In: Weiss B, editor. Aging and vulnerability to environmental chemicals age-related disorders and their origins in environmental exposures. Cambridge: Royal Society of Chemistry; 2013. p. 151–81.

    Google Scholar 

  • Lynch JW. Native glycine receptor subtypes and their physiological roles. Neuropharmacology. 2009;56:303–9.

    CAS  PubMed  Google Scholar 

  • Mackenzie Ross S, McManus IC, Harrison V, Mason O. Neurobehavioral problems following low-level exposure to organophosphate pesticides: a systematic and meta-analytic review. Crit Rev Toxicol. 2013;43:21–44.

    Google Scholar 

  • Magee JC. Dendritic integration of excitatory synaptic input. Nat Rev Neurosci. 2000;1:181–90.

    CAS  PubMed  Google Scholar 

  • Main AR, Iverson F. Measurement of the affinity and phosphorylation constants governing irreversible inhibition of cholinesterases by diisopropyl phosphorofluoridate. Biochem J. 1966;100:525–31.

    CAS  PubMed  Google Scholar 

  • Makarovsky I, Markel G, Hoffman A, Schein O, Brosh-Nissimov T, Tashma Z, et al. Strychnine—a killer from the past. Isr Med Assoc J. 2008;10:142–5.

    PubMed  Google Scholar 

  • Makris S. Regulatory considerations in developmental neurotoxicity of organophosphorus and carbamate compounds. In: Gupta R, editor. Toxicology of organophosphate and carbamate compounds. San Diego: Academic Press; 2006. p. 633–41.

    Google Scholar 

  • Makris SL, Raffaele K, Allen S, Bowers WJ, Hass U, Alleva E, et al. A retrospective performance assessment of the developmental neurotoxicity study in support of OECD test guideline 426. Environ Health Perspect. 2009;117:17–25.

    CAS  PubMed  Google Scholar 

  • Marrs TC. Toxicology of organophosphate nerve agents. In: Marrs TC, Maynard RL, Sidell F, editors. Chemical warfare agents: toxicology and treatment. Chichester: Wiley; 2008. p. 191–222.

    Google Scholar 

  • Marrs TC. Organophosphate veterinary medicines. In: Woodward K, editor. Toxicological effects of veterinary medicinal products in humans. Cambridge: RSC Press; 2013. p. 33–54.

    Google Scholar 

  • Marrs TC. Diazepam. In: Bates N ed. International Programme on Chemical Safety (WHO/ILO/UNEP), evaluation of antidotes for poisoning by organophosphorus pesticides. Geneva, Switzerland: World Health Organization; 2004. http://www.inchem.org/documents/antidote/antidote/diazepam.htm Accessed 18 Aug 2013.

  • Marrs TC, Vale JA. Management of organophosphorus pesticide poisoning. In: Gupta R, editor. Toxicology of organophosphate and carbamate compounds. San Diego: Academic Press; 2006. p. 715–33.

    Google Scholar 

  • McMahon HT, Foran P, Dolly JO, Verhage M, Wiegant VM, Nicholls DG. Tetanus toxin and botulinum toxins type A and B inhibit glutamate, gamma-aminobutyric acid, aspartate, and met-enkephalin release from synaptosomes. Clues to the locus of action. J Biol Chem. 1992;267:21338–43.

    CAS  PubMed  Google Scholar 

  • McMahon HT, Ushkaryov YA, Edelmann L, Link E, Binz T, Niemann H, et al. Cellubrevin is a ubiquitous tetanus-toxin substrate homologous to a putative synaptic vesicle fusion protein. Nature. 1993;364:346–9.

    CAS  PubMed  Google Scholar 

  • Miller G. Wildlife biology. Confused pelicans may have lingered too long up north. Science. 2009;323:449.

    CAS  PubMed  Google Scholar 

  • Minton SA. Neurotoxic snake envenoming. Semin Neurol. 1990;10:52–61.

    CAS  PubMed  Google Scholar 

  • Mody I, Glykys J, Wei W. A new meaning for "Gin & Tonic": tonic inhibition as the target for ethanol action in the brain. Alcohol. 2007;41:145–53.

    CAS  PubMed  Google Scholar 

  • Mok MH, Fricker AC, Weil A, Kew JN. Electrophysiological characterisation of the actions of kynurenic acid at ligand-gated ion channels. Neuropharmacology. 2009;57:242–9.

    CAS  PubMed  Google Scholar 

  • Monte AA, Bucher-Bartelson B, Heard KJ. A US perspective of symptomatic Latrodectus spp. envenomation and treatment: a national poison data system review. Ann Pharmacother. 2011;45:1491–8.

    PubMed  Google Scholar 

  • Moroni F, Cozzi A, Sili M, Mannaioni G. Kynurenic acid: a metabolite with multiple actions and multiple targets in brain and periphery. J Neural Transm. 2012;119:133–9.

    CAS  PubMed  Google Scholar 

  • Nichols DE. Hallucinogens. Pharmacol Ther. 2004;101:131–81.

    CAS  PubMed  Google Scholar 

  • Nordberg M, Nordberg GF. Toxicology and biological monitoring of metals. In: Ballantyne B, Marrs TC, Syversen T, editors. General and applied toxicology. Chichester: Wiley; 2009. p. 3309–53.

    Google Scholar 

  • O’Brien RD. Acetylcholinesterase and its inhibition. In: Wilkinson CF, editor. Insecticides biochemistry and physiology. New York: Plenum Press; 1976. p. 271–96.

    Google Scholar 

  • OECD Test Guideline no. 418, 27th July 1995. Delayed neurotoxicity of organophosphorus substances following acute exposure. Paris, France: Organisation for Economic Co-operation and Development; 1995.

  • Oehme FW, Rumbeiha WK. Veterinary toxicology. In: Ballantyne B, Marrs TC, Syversen T, editors. General and applied toxicology. Chichester: Wiley; 2009. p. 2437–59.

    Google Scholar 

  • Olanow CW. Manganese-induced parkinsonism and Parkinson’s disease. Ann N Y Acad Sci. 2004;1012:209–23.

    CAS  PubMed  Google Scholar 

  • Olney JW. Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science. 1969;164:719–21.

    CAS  PubMed  Google Scholar 

  • Olney JW. Status of monosodium glutamate revisited. Am J Clin Nutr. 1973;26:683–5.

    CAS  PubMed  Google Scholar 

  • Oser BL, Carson S, Vagin EE, Cox GE. Oral and subcutaneous administration of monosodium glutamate to infant rodents and dogs. Nature. 1971;229:411.

    CAS  PubMed  Google Scholar 

  • Peng Chen Z, Morris JG, Rodriguez RL, Shukla AW, Tapia-Núñez J, Okun MS. Emerging opportunities for serotypes of botulinum neurotoxins. Toxins (Basel). 2012;4:1196–222.

    PubMed  Google Scholar 

  • Pereda AE, Curti S, Hoge G, Cachope R, Flores CE, Rash JE. Gap junction-mediated electrical transmission: regulatory mechanisms and plasticity. Biochim Biophys Acta. 2013;1828:134–46.

    CAS  PubMed  Google Scholar 

  • Preusser H-J. Die Ultrastructur der motorischen Endplatte im Zwerchfell der Ratte und Veränderungen nach Inhibierung der Acetylcholinesterase. Z Zellforsch Mikrosk Anat. 1967;80:436–57.

    CAS  PubMed  Google Scholar 

  • Proudfoot AT. Poisoning with amitraz. Toxicol Rev. 2003;22:71–4.

    CAS  PubMed  Google Scholar 

  • Pulido OM. Domoic acid toxicologic pathology: a review. Mar Drugs. 2008;6:180–219.

    CAS  PubMed  Google Scholar 

  • Quistad GB, Nomura DK, Sparks SE, Segall Y, Casida JE. Cannabinoid CB1 receptor as a target for chlorpyrifos oxon and other organophosphorus pesticides. Toxicol Lett. 2002;135:89–93.

    CAS  PubMed  Google Scholar 

  • Racette BA, Antenor JA, McGee-Minnich L, Moerlein SM, Videen TO, Kotagal V, et al. [18F]FDOPA PET and clinical features in parkinsonism due to manganism. Mov Disord. 2005;20:492–6.

    PubMed  Google Scholar 

  • Rauber A. Black widow spider bites. J Toxicol Clin Toxicol. 1983–1984;21:473–85.

    Google Scholar 

  • Rees DC, Francis EZ, Kimmel CA. Qualitative and quantitative comparability of human and animal developmental neurotoxicants: a workshop summary. Neurotoxicology. 1990;11:257–69.

    CAS  PubMed  Google Scholar 

  • Richardson JR, Quan Y, Sherer TB, Greenamyre JT, Miller GW. Paraquat neurotoxicity is distinct from that of MPTP and rotenone. Toxicol Sci. 2005;88:193–201.

    CAS  PubMed  Google Scholar 

  • Richardson RJ, Hein ND, Wijeyesakere SJ, Fink JK, Makhaeva GF. Neuropathy target esterase (NTE): overview and future. Chem Biol Interact. 2012;203:238–44.

    PubMed  Google Scholar 

  • Rojo AI, Cavada C, de Sagarra MR, Cuadrado A. Chronic inhalation of rotenone or paraquat does not induce Parkinson’s disease symptoms in mice or rats. Exp Neurol. 2007;208:120–6.

    CAS  PubMed  Google Scholar 

  • Romano JA, McDonough JH, Sheridan R, Sidell FR. Health effects of low-level exposure to nerve agents. In: Somani MS, Romano JA, editors. Chemical warfare agents: toxicity at low levels. Boca Raton: CRC Press; 2001. p. 1–24.

    Google Scholar 

  • Rose PH. Nicotine and the neonicotinoids. In: Marrs TC, editor. Mammalian toxicology of insecticides. Cambridge: Royal Society of Chemistry; 2012. p. 184–220.

    Google Scholar 

  • Rowan EG. What does beta-bungarotoxin do at the neuromuscular junction? Toxicon. 2001;39:107–18.

    CAS  PubMed  Google Scholar 

  • Schep LJ, Slaughter RJ, Becket G, Beasley DM. Poisoning due to water hemlock. Clin Toxicol (Phila). 2009;47:270–8.

    CAS  Google Scholar 

  • Scholin CA, Gulland F, Doucette GJ, Benson S, Busman M, Chavez FP, et al. Mortality of sea lions along the central California coast linked to a toxic diatom bloom. Nature. 2000;403:80–4.

    CAS  PubMed  Google Scholar 

  • Senanayake N, Karalliedde L. Neurotoxic effects of organophosphorus insecticides. An intermediate syndrome. New Eng J Med. 1987;316:761–3.

    CAS  PubMed  Google Scholar 

  • Sierra Beltrán A, Palafox-Uribe M, Grajales-Montiel J, Cruz-Villacorta A, Ochoa JL. Sea bird mortality at Cabo San Lucas, Mexico: evidence that toxic diatom blooms are spreading. Toxicon. 1997;35:447–53.

    PubMed  Google Scholar 

  • Sigel E, Lüscher BP. A closer look at the high affinity benzodiazepine binding site on GABAA receptors. Curr Top Med Chem. 2011;11:241–6.

    Google Scholar 

  • Silman I, Sussman JL. Acetylcholinesterase: how is structure related to function? Chem Biol Interact. 2000;175:3–10.

    Google Scholar 

  • Slikker W, Xu ZA, Levin ED, Slotkin TA. Mode of action: disruption of brain cell replication, second messenger, and neurotransmitter systems during development leading to cognitive dysfunction–developmental neurotoxicity of nicotine. Crit Rev Toxicol. 2005;35:703–11.

    CAS  PubMed  Google Scholar 

  • Slorach SA. Histamine in food. In: Uvnas B, editor. Histamine and histamine antagonists, Handbook of experimental pharmacology, vol. 97. New York: Springer; 1991. p. 511–20.

    Google Scholar 

  • Smallridge RC, Carr FE, Fein HG. Diisopropylfluorophosphate (DFP) reduces serum prolactin, thyrotropin, luteinizing hormone, and growth hormone and increases adrenocorticotropin and corticosterone in rats: involvement of dopaminergic and somatostatinergic as well as cholinergic pathways. Toxicol Appl Pharmacol. 1991;108:284–95.

    CAS  PubMed  Google Scholar 

  • Smith AG. DDT and other chlorinated insecticides. In: Marrs TC, editor. Mammalian toxicology of insecticides. Cambridge: RSC Press; 2012. p. 37–136.

    Google Scholar 

  • Snyder SH, D’Amato RJ. MPTP: a neurotoxin relevant to the pathophysiology of Parkinson’s disease. The 1985 George C. Cotzias lecture. Neurology. 1986;36:250–8.

    CAS  PubMed  Google Scholar 

  • Spivey A. Rotenone and paraquat linked to Parkinson’s disease: human exposure study supports years of animal studies. Environ Health Perspect. 2011;119:A259.

    PubMed  Google Scholar 

  • Stone TW. Neuropharmacology of quinolinic and kynurenic acids. Pharmacol Rev. 1993;45:309–79.

    CAS  PubMed  Google Scholar 

  • Swanston DW, Gleadle RI, Colgrave HF, Marrs TC. Cutaneous histamine-releasing activity of dimethylsulphoxide (DMSO) in guinea pigs. Toxicol Lett. 1982;10:87–90.

    CAS  PubMed  Google Scholar 

  • Talarico G, Tosto G, Pietracupa S, Piacentini E, Canevelli M, Lenzi GL, et al. Serotonin toxicity: a short review of the literature and two case reports involving citalopram. Neurol Sci. 2011;32:507–9.

    CAS  PubMed  Google Scholar 

  • Tamiya N, Yagi T. Studies on sea snake venom. Proc Jpn Acad Ser B Phys Biol Sci. 2011;87:41–52.

    CAS  PubMed  Google Scholar 

  • Tomizawa M, Casida JE. Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Annu Rev Entomol. 2003;48:339–64.

    CAS  PubMed  Google Scholar 

  • Tomizawa M, Casida JE. Neonicotinoid insecticide toxicology: mechanisms of selective action. Annu Rev Pharmacol Toxicol. 2005;45:247–68.

    CAS  PubMed  Google Scholar 

  • Tomizawa M, Lee DL, Casida JE. Neonicotinoid insecticides: molecular features conferring selectivity for insect versus mammalian nicotinic receptors. J Agric Food Chem. 2000;48:6016–24.

    CAS  PubMed  Google Scholar 

  • Tu AT. Biotoxicology of sea snake venoms. Ann Emerg Med. 1987;16:1023–8.

    CAS  PubMed  Google Scholar 

  • UK Ministry of Defence. Medical Manual of Defence against Chemical Agents JSP 312 A/24/Gen/4392. London, Edinburgh and Belfast: Her Majesty’s Stationary Office; 1972.

    Google Scholar 

  • Umemura T, Naoi M, Takahashi T, Fukui Y, Yasue T, Ohashi M, et al. Cytotoxic effect of 1-methyl-4-phenylpyridinium ion on human melanoma cell lines, HMV-II and SK-MEL-44, is dependent on the melanin contents and caused by inhibition of mitochondrial electron transport. Biochem Med Metab Biol. 1990;44:51–8.

    CAS  PubMed  Google Scholar 

  • USEPA (2006). Pesticide News Story: Remaining Lindane Registrations Cancelled For Release: Washington, DC, USA: Unites States Environmental Protection Agency; December 15, 2006. http://www.epa.gov/oppfead1/cb/csb_page/updates/2006/lindane-order.htm. Accessed 17 Aug 2013

  • USFDA. Database of Select Committee on GRAS Substances Reviews monosodium glutamate. Silver Spring, MD, USA: United States Food and Drug Administration; 2006. http://www.accessdata.fda.gov/scripts/fcn/fcnDetailNavigation.cfm?rpt=scogslisting&id=217. Accessed 19 Aug 2012

  • Vale JA, Bradberry S, Proudfoot AT. Clinical toxicology of insecticides. In: Marrs TC, editor. Mammalian toxicology of insecticides. Cambridge: Royal Society of Chemistry; 2012. p. 312–47.

    Google Scholar 

  • van der Merwe D. Poisons of plant origin. In: Ballantyne B, Marrs TC, Syversen T, editors. General and applied toxicology. Chichester: Wiley; 2009. p. 3449–66.

    Google Scholar 

  • van Helden HP, van der Wiel HJ, Zijlstra JJ, Melchers BP, Busker RW. Comparison of the therapeutic effects and pharmacokinetics of HI-6, HLö-7, HGG-12, HGG-42 and obidoxime following non-reactivatable acetylcholinesterase inhibition in rats. Arch Toxicol. 1994;68:224–30.

    PubMed  Google Scholar 

  • Wadia RS, Chitra S, Amin RB, Kiwalker RS, Sardesai HV. Neurological manifestations of organophosphorous insecticide poisoning. J Neurol Neurosurg Psych. 1987;50:1442–8.

    Google Scholar 

  • Walker R, Lupien JR. The safety evaluation of monosodium glutamate. J Nutr. 2000;130(4S Suppl):1049S–52S.

    CAS  PubMed  Google Scholar 

  • Walton JR. Cognitive deterioration and related neuropathology in older people with Alzheimer’s disease could result from life long exposure to aluminium compounds. In: Weiss B, editor. Aging and vulnerability to environmental chemicals age-related disorders and their origins in environmental exposures. Cambridge: Royal Society of Chemistry; 2013. p. 31–82.

  • Wang F, Li C, Liu W, Jin Y. Effect of exposure to volatile organic compounds (VOCs) on airway inflammatory response in mice. J Toxicol Sci. 2012;37:739–48.

    CAS  PubMed  Google Scholar 

  • Watson A, Bakshi K, Opresko D, Young R, Hauschild V, King J. Cholinesterase inhibitors as chemical warfare agents: community preparedness guidelines. In: Gupta R, editor. Toxicology of organophosphate and carbamate compounds. San Diego: Academic Press; 2006. p. 69–78.

    Google Scholar 

  • Wedin GP, Keyler DE, Bilden EF. Poisons of animal origin. In: Ballantyne B, Marrs TC, Syversen T, editors. General and applied toxicology. Chichester: Wiley; 2009. p. 3407–48.

    Google Scholar 

  • Wilson BW, Hooper MJ, Hansen ME, Nieberg PS. Reactivation of organophosphorus inhibited AChE with oximes. In: Chambers JE, Levi PE, editors. Organophosphates, chemistry, fate and effects. San Diego: Academic Press; 1992. p. 107–37.

    Google Scholar 

  • Wood PL. The co-agonist concept: is the NMDA-associated glycine receptor saturated in vivo? Life Sci. 1995;57:301–10.

    CAS  PubMed  Google Scholar 

  • Woodward KN. Macrocyclic lactone endectocides. In: Marrs TC, editor. Mammalian toxicology of insecticides. Cambridge: Royal Society of Chemistry; 2012a. p. 427–67.

    Google Scholar 

  • Woodward KN. Veterinary pesticides. In: Marrs TC, editor. Mammalian toxicology of insecticides. Cambridge: Royal Society of Chemistry; 2012b. p. 348–426.

    Google Scholar 

  • Yilmaz HL, Yildizdas DR. Amitraz poisoning, an emerging problem: epidemiology, clinical features, management, and preventive strategies. Arch Dis Child. 2003;88:130–4.

    CAS  PubMed  Google Scholar 

  • Yue J, Dong BR, Lin X, Yang M, Wu HM, Wu T. Huperzine A for mild cognitive impairment. Cochrane Database Syst Rev. 2012;12, CD008827.

  • Zhou Y, Yang M, Dong BR. Monosodium glutamate avoidance for chronic asthma in adults and children. Cochrane Database Syst Rev. 2012;6, CD004357.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy C. Marrs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marrs, T.C., Maynard, R.L. Neurotranmission systems as targets for toxicants: a review. Cell Biol Toxicol 29, 381–396 (2013). https://doi.org/10.1007/s10565-013-9259-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-013-9259-9

Keywords

Navigation