Cell Biology and Toxicology

, Volume 29, Issue 2, pp 101–116 | Cite as

Toxicity of commercially available engineered nanoparticles to Caco-2 and SW480 human intestinal epithelial cells

Original Research

Abstract

The effects of ingestion of engineered nanoparticles (NPs), especially via drinking water, are unknown. Using NPs spiked into synthetic water and cell culture media, we investigated cell death, oxidative stress, and inflammatory effects of silver (Ag), titanium dioxide (TiO2), and zinc oxide (ZnO) NPs on human intestinal Caco-2 and SW480 cells. ZnO NPs were cytotoxic to both cell lines, while Ag and TiO2 NPs were toxic only at 100 mg/L to Caco-2 and SW480, respectively. ZnO NPs led to significant cell death in synthetic freshwaters with 1 % phosphate-buffered saline in both cell lines, while Ag and TiO2 NPs in buffered water led to cell death in SW480 cells. NP exposures did not yield significant increased reactive oxygen species generation but all NP exposures led to increased IL-8 cytokine generation in both cell lines. These results indicate cell stress and cell death from NP exposures, with a varied response based on NP composition.

Keywords

Nanoparticles Silver Titanium dioxide Zinc oxide 

Supplementary material

10565_2013_9241_MOESM1_ESM.doc (2.1 mb)
ESM 1DOC 2,099 kb

References

  1. Abbott Chalew TE. Emerging contaminants and public health: Evaluation of the stability, toxicity, and treatment of engineered nanoparticles in drinking water. Ph.D. 3533276, The Johns Hopkins University; 2012Google Scholar
  2. Abdelhay A, Carmen-Mihaela T, Christophe M, Cédric M, Hélène G, Ghouti M, et al. Physicochemical properties and cellular toxicity of (poly)aminoalkoxysilanes-functionalized ZnO quantum dots. Nanotechnol. 2012;23(33):335101.CrossRefGoogle Scholar
  3. AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2008;3(2):279–90.CrossRefGoogle Scholar
  4. Baker RD, Baker SS, Larosa K. Polarized caco-2 cells. Dig Dis Sci. 1995;40(3):510–8.PubMedCrossRefGoogle Scholar
  5. Barone F, de Berardis B, Bizzarri L, Degan P, Andreoli C, Zijno A, et al. Physico-chemical characteristics and cyto-genotoxic potential of ZnO and TiO 2 nanoparticles on human colon carcinoma cells. J Phys Conf Ser. 2011;304(1):012047.CrossRefGoogle Scholar
  6. Benn TM, Westerhoff P. Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol. 2008;42(11):4133–9.PubMedCrossRefGoogle Scholar
  7. Blaser SA, Scheringer M, Macleod M, Hungerbuhler K. Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ. 2008;390:396–406.PubMedCrossRefGoogle Scholar
  8. Brogna A, Ferrara R, Bucceri AM, Lanteri E, Catalano F. Influence of aging on gastrointestinal transit time: an ultrasonographic and radiologic study. Invest Radiol. 1999;34:357–9.PubMedCrossRefGoogle Scholar
  9. Brun E, Jugan M-L, Herlin-Boime N, Jaillard D, Fayard B, Flank AM, et al. Investigation of TiO2 nanoparticles translocation through a caco-2 monolayer. J Phys Conf Ser. 2011;304(1):012048.CrossRefGoogle Scholar
  10. Carlson C, Hussain SM, Schrand AM, Braydich-Stolle KL, Hess KL, Jones RL, et al. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B. 2008;112(43):13608–19.PubMedCrossRefGoogle Scholar
  11. Crabtree JE, Farmery SM, Lindley IJ, Figura N, Peichl P, Tompkins DS. CagA/cytotoxic strains of Helicobacter pylori and interleukin-8 in gastric epithelial cell lines. J Clin Pathol. 1994;47(10):945–50.PubMedCrossRefGoogle Scholar
  12. De Berardis B, Civitelli G, Condello M, Lista P, Pozzi R, Arancia G, et al. Exposure to ZnO nanoparticles induces oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicol Appl Pharmacol. 2010;246(3):116–27.CrossRefGoogle Scholar
  13. de Jong WH, Park MVDZ. Nanotoxicology - in vitro studies: what do you need to know? In: Nanoimpactnet, editor. 1st NanoImpactNet conference. Lausanne: NanoImpactNet; 2009.Google Scholar
  14. Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL. The mechanism of uptake of biodegradable microparticles in caco-2 cells is size dependent. Pharm Res. 1997;14(11):1568–73.PubMedCrossRefGoogle Scholar
  15. Finamore A, Massimi M, Conti Devirgiliis L, Mengheri E. Zinc deficiency induces membrane barrier damage and increases neutrophil transmigration in caco-2 cells. J Nutr. 2008;138(9):1664–70.PubMedGoogle Scholar
  16. Gaiser BK, Fernandes TF, Jepson MA, Lead JR, Tyler CR, Baalousha M, et al. Interspecies comparisons on the uptake and toxicity of silver and cerium dioxide nanoparticles. Environ Toxicol Chem. 2012;31(1):144–54.PubMedCrossRefGoogle Scholar
  17. Gerloff K, Albrecht C, Boots AW, Förster I, Schins RPF. Cytotoxicity and oxidative DNA damage by nanoparticles in human intestinal caco-2 cells. Nanotoxicol. 2009;3(4):355–64.CrossRefGoogle Scholar
  18. Gerloff K, Fenoglio I, Carella E, Kolling J, Albrecht C, Boots AW, et al. Distinctive toxicity of TiO2 rutile/anatase mixed phases nanoparticles on caco-2 cells. Chem Res Toxicol. 2012;25(3):646–55.PubMedCrossRefGoogle Scholar
  19. Gottschalk F, Nowack B. The release of engineered nanomaterials to the environment. J Environ Monitor. 2011;13(5):1145–55.CrossRefGoogle Scholar
  20. Handy RD, Jha AN, Al-Jubory A. In vitro techniques and their application to nanoparticles. Comp Biochem Physiol A Mol Integr Physiol. 2009;153(2, Supplement 1):S87–S.CrossRefGoogle Scholar
  21. Hu X, Cook S, Wang P, Hwang H-M. In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles. Sci Total Environ. 2009a;407(8):3070–2.PubMedCrossRefGoogle Scholar
  22. Hu Z, Pan Y, Wang J, Chen J, Li J, Ren L. Meso-tetra (carboxyphenyl) porphyrin (TCPP) nanoparticles were internalized by SW480 cells by a clathrin-mediated endocytosis pathway to induce high photocytotoxicity. Biomed Pharmacother. 2009b;63(2):155–64.PubMedCrossRefGoogle Scholar
  23. Huang H, O’Melia CR. Direct-flow microfiltration of aquasols II. On the role of colloidal natural organic matter. J Membr Sci. 2008;325:903–13.CrossRefGoogle Scholar
  24. Hyung H, Kim J-H. Dispersion of C60 in natural water and removal by conventional drinking water treatment processes. Water Res. 2009;43(9):2463–70.PubMedCrossRefGoogle Scholar
  25. Jepson MA. Gastrointestinal tract. In: Fadeel B, Pietroiusti A, Shvedova AA, editors. Adverse effects of engineered nanomaterials: exposure, toxicology, and impact on human health. New York: Elsevier; 2012. p. 209–24.CrossRefGoogle Scholar
  26. Ji Z, Jin X, George S, Xia T, Meng H, Wang X, et al. Dispersion and stability optimization of TiO2 nanoparticles in cell culture media. Environ Sci Technol. 2010;44(19):7309–14.PubMedCrossRefGoogle Scholar
  27. Jiang J, Oberdörster G, Biswas P. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanoparticle Res. 2009;11(1):77–89.CrossRefGoogle Scholar
  28. Jobin C, Haskill S, Mayer L, Panja A, Sartor R. Evidence for altered regulation of I kappa B alpha degradation in human colonic epithelial cells. J Immunol. 1997;158(1):226–34.PubMedGoogle Scholar
  29. Johnston H, Hutchison G, Christensen F, Peters S, Hankin S, Stone V. Identification of the mechanisms that drive the toxicity of TiO2 particulates: the contribution of physicochemical characteristics. Part Fibre Toxicol. 2009;6(1):1–27.CrossRefGoogle Scholar
  30. Johnston HJ, Hutchison G, Christensen FM, Peters S, Hankin S, Stone V. A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol. 2010;40(4):328–46.PubMedCrossRefGoogle Scholar
  31. Jung HC, Eckmann L, Yang SK, Panja A, Fierer J, Morzycka-Wroblewska E, et al. A distinct array of proinflammatory cytokines is expressed in human colon epithelial cells in response to bacterial invasion. J Clin Investig. 1995;95(1):55–65.PubMedCrossRefGoogle Scholar
  32. Jung T, Kamm W, Breitenbach A, Kaiserling E, Xiao JX, Kissel T. Biodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake? Eur J Pharm Biopharm. 2000;50(1):147–60.PubMedCrossRefGoogle Scholar
  33. Kaegi R, Sinnet B, Zuleeg S, Hagendorfer H, Mueller E, Vonbank R, et al. Release of silver nanoparticles from outdoor facades. Environ Pollut. 2010;158(9):2900–5.PubMedCrossRefGoogle Scholar
  34. Kilari S, Pullakhandam R, Nair KM. Zinc inhibits oxidative stress-induced iron signaling and apoptosis in caco-2 cells. Free Radic Biol Med. 2010;48(7):961–8.PubMedCrossRefGoogle Scholar
  35. Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, et al. Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem. 2008;27(9):1825–51.PubMedCrossRefGoogle Scholar
  36. Koeneman B, Zhang Y, Westerhoff P, Chen Y, Crittenden J, Capco D. Toxicity and cellular responses of intestinal cells exposed to titanium dioxide. Cell Biol Toxicol. 2010;26(3):225–38.PubMedCrossRefGoogle Scholar
  37. Kroll A, Pillukat M, Hahn D, Schnekenburger J. Interference of engineered nanoparticles with in vitro toxicity assays. Arch Toxicol. 2012;86(7):1123–36.PubMedCrossRefGoogle Scholar
  38. Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, et al. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res. 2008;42(18):4591–602.PubMedCrossRefGoogle Scholar
  39. Limbach LK, Bereiter R, Mueller E, Krebs R, Gaelli R, Stark WJ. Removal of oxide nanoparticles in a model wastewater treatment plant: influence of agglomeration and surfactants on clearning efficiency. Environ Sci Technol. 2008;42(15):5828–33.PubMedCrossRefGoogle Scholar
  40. Liu W, Wu Y, Wang C, Li HC, Wang T, Liao CY, et al. Impact of silver nanoparticles on human cells: effect of particle size. Nanotoxicol. 2010;4(3):319–30.CrossRefGoogle Scholar
  41. Mahendra S, Li Q, Lyon DY, Brunet L, Alvarez PJJ. Nanotechnology-enabled water disinfection and microbial control: merits and limitations. In: Nora S, Mamadou D, Jeremiah D, Anita S, Richard S, editors. Nanotechnology applications for clean water. Boston: William Andrew; 2009. p. 157–66.CrossRefGoogle Scholar
  42. Mueller NC, Nowack B. Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol. 2008;42(12):4447–53.PubMedCrossRefGoogle Scholar
  43. Nowack B. The behavior and effects of nanoparticles in the environment. Environ Pollut. 2009;157:1063–4.PubMedCrossRefGoogle Scholar
  44. Oyanedel-Craver VA, Smith JA. Sustainable colloidal-silver-impregnated ceramic filter for point-of-use water treatment. Environ Sci Technol. 2007;42(3):927–33.CrossRefGoogle Scholar
  45. Project on Emerging Nanotechnologies (PEN). Consumer products inventory. Washington, D.C.: Woodrow Wilson Institute; 2013. http://www.nanotechproject.org/inventories/consumer/. Accessed 2011
  46. Piret J-P, Vankoningsloo S, Mejia J, Noël F, Boilan E, Lambinon F, et al. Differential toxicity of copper (II) oxide nanoparticles of similar hydrodynamic diameter on human differentiated intestinal caco-2 cell monolayers is correlated in part to copper release and shape. Nanotoxicol. 2011;0(0):1–15.Google Scholar
  47. Powell JJ, Thoree V, Pele LC. Dietary microparticles and their impact on tolerance and immune responsiveness of the gastrointestinal tract. Br J Nutr. 2007;98:S59–63.PubMedCrossRefGoogle Scholar
  48. Powers K, Palazuelos M, Brown SC, Roberts SM. Characterization of nanomaterials for toxicological evaluation. In: Sahu S, Casciano D, editors. Nanotoxicology: from in vivo and in vitro models to health risks. New York: Wiley; 2009. p. 1–27.Google Scholar
  49. Rao AL, Sankar GG. Caco-2 cells: an overview. JPRHC. 2009;1(2):260–75.Google Scholar
  50. Reed RB, Ladner DA, Higgins CP, Westerhoff P, Ranville JF. Solubility of nano-zinc oxide in environmentally and biologically important matrices. Environ Sci Technol. 2012;31(1):93–9.Google Scholar
  51. Reijnders L. Cleaner nanotechnology and hazard reduction of manufactured nanoparticles. J Clean Prod. 2006;14(2):124–33.CrossRefGoogle Scholar
  52. Stone V, Johnston H, Schins RPF. Development of in vitro systems for nanotoxicology: methodological considerations. Crit Rev Toxicol. 2009;39(7):613–26.PubMedCrossRefGoogle Scholar
  53. Thubagere A, Reinhard BM. Nanoparticle-induced apoptosis propagates through hydrogen-peroxide-mediated bystander killing: insights from a human intestinal epithelium in vitro model. ACS Nano. 2010;4(7):3611–22.PubMedCrossRefGoogle Scholar
  54. Wang L, Nagesha DK, Selvarasah S, Dokmeci MR, Carrier RL. Toxicity of CdSe nanoparticles in caco-2 cell cultures. J Nanobiotechnol. 2008;6:11.CrossRefGoogle Scholar
  55. Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, et al. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano. 2008;2(10):2121–34.PubMedCrossRefGoogle Scholar
  56. Zhang Y, Chen Y, Westerhoff P, Hristovski K, Crittenden JC. Stability of commercial metal oxide nanoparticles in water. Water Res. 2008;42(8–9):2204–12.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Environmental Health SciencesJohns Hopkins University Bloomberg School of Public HealthBaltimoreUSA

Personalised recommendations