Cell Biology and Toxicology

, Volume 27, Issue 4, pp 249–266 | Cite as

In vitro interactions between several species of harmful algae and haemocytes of bivalve molluscs

  • Hélène Hégaret
  • Patricia Mirella da Silva
  • Gary H. Wikfors
  • Hansy Haberkorn
  • Sandra E. Shumway
  • Philippe Soudant
Article

Abstract

Harmful algal blooms (HABs) can have both lethal and sublethal impacts on shellfish. To understand the possible roles of haemocytes in bivalve immune responses to HABs and how the algae are affected by these cells (haemocytes), in vitro tests between cultured harmful algal species and haemocytes of the northern quahog (= hard clam) Mercenaria mercenaria, the soft-shell clam Mya arenaria, the eastern and Pacific oysters Crassostrea virginica and Crassostrea gigas and the Manila clam Ruditapes philippinarum were carried out. Within their respective ranges of distribution, these shellfish species can experience blooms of several HAB species, including Prorocentrum minimum, Heterosigma akashiwo, Alexandrium fundyense, Alexandrium minutum and Karenia spp.; thus, these algal species were chosen for testing. Possible differences in haemocyte variables attributable to harmful algae and also effects of haemolymph and haemocytes on the algae themselves were measured. Using microscopic and flow cytometric observations, changes were measured in haemocytes, including cell morphology, mortality, phagocytosis, adhesion and reactive oxygen species (ROS) production, as well as changes in the physiology and the characteristics of the algal cells, including mortality, size, internal complexity and chlorophyll fluorescence. These experiments suggest different effects of the several species of harmful algae upon bivalve haemocytes. Some harmful algae act as immunostimulants, whereas others are immunosuppressive. P. minimum appears to activate haemocytes, but the other harmful algal species tested seem to cause a suppression of immune functions, generally consisting of decreases in phagocytosis, production of ROS and cell adhesion and besides cause an increase in the percentage of dead haemocytes, which could be attributable to the action of chemical toxins. Microalgal cells exposed to shellfish haemolymph generally showed evidence of algal degradation, e.g. loss of chlorophyll fluorescence and modification of cell shape. Thus, in vitro tests allow a better understanding of the role of the haemocytes and the haemolymph in the defence mechanisms protecting molluscan shellfish from harmful algal cells and could also be further developed to estimate the effects of HABs on bivalve molluscs in vivo.

Keywords

Bivalve Haemocyte Harmful algae HAB Immune response Phagocytosis 

References

  1. Anderson RS. Interactions of Perkinsus marinus with humoral factors and hemocytes of Crassostrea virginica. J Shellfish Res. 1996;15:127–34.Google Scholar
  2. Anderson RS. Lack of hemocyte chemiluminescence stimulation by Perkinsus marinus in eastern oysters Crassostrea virginica with dermo disease. J Aquat Anim Health. 1999;11:179–82.CrossRefGoogle Scholar
  3. Anderson RS, Burreson EM, Paynter KT. Defense responses of hemocytes withdrawn from Crassostrea virginica infected with Perkinsus marinus. J Invert Pathol. 1995;66:82–9.CrossRefGoogle Scholar
  4. Anderson RS, Brubacher LL, Calvo LMR, Burreson EM, Unger MA. Effect of in vitro exposure to tributyltin on generation of oxygen metabolites by oyster hemocytes. Environ Res. 1997;74:84–90.PubMedCrossRefGoogle Scholar
  5. Arzul G, Gentien P, Bodennec G, Toularastel F, Youenou A, Crassous MP. Comparison of toxic effects in Gymnodinium cf. nagasakiense polyunsaturated fatty acids. In: Lassus P, Arzul G, Erard E, Gentien P, Mercaillou-Le-Baut C, editors. Harmful marine algal blooms. Paris: Lavoisier; 1995. p. 395–400.Google Scholar
  6. Arzul G, Seguel M, Guzman L, Erard-Le Denn E. Comparison of allelopathic properties in three toxic Alexandrium species. J Exper Mar Biol Ecol. 1999;232:285–95.CrossRefGoogle Scholar
  7. Bachère E, Gueguen Y, Gonzalez M, de Lorgeril J, Garnier J, Romestand B. Insights into the anti-microbial defense of marine invertebrates: the penaeid shrimps and the oyster Crassostrea gigas. Immunol Rev. 2004;198:149–68.PubMedCrossRefGoogle Scholar
  8. Bado-Nilles A, Gagnaire B, Thomas-Guyon H, Le Floch S, Renault T. Effects of 16 pure hydrocarbons and two oils on haemocyte and haemolymphatic parameters in the Pacific oyster, Crassostrea gigas (Thunberg). Toxicol In Vitro. 2008;22(6):1610–7.PubMedCrossRefGoogle Scholar
  9. Bricelj V, Connell L, Konoki K, MacQuarrie S, Scheuer T, Catterall W, et al. Sodium channel mutation leading to saxitoxin resistance in clams increases risk of PSP. Nature. 2005;434:763–6.PubMedCrossRefGoogle Scholar
  10. Buggé D, Hégaret H, Wikfors GH, Allam B. Oxidative burst in hard clam (Mercenaria mercenaria) haemocytes. Fish Shellfish Immunol. 2007;23:188–96.PubMedCrossRefGoogle Scholar
  11. Burkholder JM. Implications of harmful microalgae and heterotrophic dinoflagellates in management of sustainable marine fisheries. Ecol Appl. 1998;8:S37–62.Google Scholar
  12. Cheng TC. Hemocytes: Forms and functions. In: Kennedy VS, Newell RIE, Eble AF, editors. The Eastern oyster Crassostrea virginica. College Park: Maryland Sea Grant; 1996. p. 299–333.Google Scholar
  13. Choquet G, Soudant P, Lambert C, Nicolas JL, Paillard C. Reduction of adhesion properties on Ruditapes philippinarum hemocytes exposed to Vibrio tapetis. Dis Aquat Org. 2003;57:109–16.PubMedCrossRefGoogle Scholar
  14. Chu FLE, Lapeyre JF. Development of disease caused by the parasite, Perkinsus marinus and defense-related hemolymph factors in three populations of oysters from the Chesapeake Bay, USA. J Shellfish Res. 1993a;12:21–7.Google Scholar
  15. Chu FLE, Lapeyre JF. Perkinsus marinus susceptibility and defense-related activities in eastern oysters Crassostrea virginica—temperature effects. Dis Aquat Org. 1993b;16:223–34.CrossRefGoogle Scholar
  16. da Silva P, Hégaret H, Lambert C, Wikfors GH, Le Goïc N, Shumway SE, et al. Immunological responses of the Manila clam (Ruditapes philippinarum) with varying parasite (Perkinsus olseni) burden, during a long term exposure to the harmful alga, Karenia selliformis and possible interactions. Toxicon. 2008;51:563–73.PubMedCrossRefGoogle Scholar
  17. Erard-Le-Denn E, Morlaix M, Dao JC. Effects of Gyrodinium cf. aureolum on Pecten maximus (post larvae, juveniles and adults). In: Graneli E, Sundstrom B, Edler L, Anderson DM, editors. Toxic marine phytoplankton. Elsevier: Amsterdam; 1990. p. 132–6.Google Scholar
  18. Fisher WS, Oliver LM, Walker WW, Manning CS, Lytle TF. Decreased resistance of eastern oysters (Crassostrea virginica) to a protozoan pathogen (Perkinsus marinus) after sublethal exposure to tributyltin oxide. Mar Environ Res. 1999;47:185–201.CrossRefGoogle Scholar
  19. Fisher WS, Oliver LM, Winstead JT, Long ER. A survey of oysters Crassostrea virginica from Tampa Bay, Florida: associations of internal defense measurements with contaminant burdens. Aquat Toxicol. 2000;51:115–38.PubMedCrossRefGoogle Scholar
  20. Ford SE, Bricelj MV, Lambert C, Paillard C. Deleterious effects of a non PST bioactive compound(s) from Alexandrium tamarense on bivalve hemocytes. Mar Biol. 2008;154:1432–793.CrossRefGoogle Scholar
  21. Fossat B, Porthe-Nibelle J, Sola P, Masoni A, Gentien P, Bodennec G. Toxicity of fatty acid 18: 5n3 from Gymnodinium cf. mikimotoi: II. Intracellular pH and KC uptake in isolated trout hepatocytes. J Appl Toxicol. 1999;19:275–8.PubMedCrossRefGoogle Scholar
  22. Fournier M, Pellerin J, Clermont Y, Morin Y, Brousseau P. Effects of in vivo exposure of Mya arenaria to organic and inorganic mercury on phagocytic activity of hemocytes. Toxicol. 2001;161:201–11.CrossRefGoogle Scholar
  23. Gagnaire B, Renault T, Bouilly K, Lapegue S, Thomas-Guyon H. Study of atrazine effects on pacific oyster, Crassostrea gigas, haemocytes. Curr Pharm Des. 2003;9:193–9.PubMedCrossRefGoogle Scholar
  24. Gagnaire B, Thomas-Guyon H, Renault T. In vitro effects of cadmium and mercury on Pacific oyster, Crassostrea gigas (Thunberg), haemocytes. Fish Shellfish Immunol. 2004;16:501–12.PubMedCrossRefGoogle Scholar
  25. Gagnaire B, Thomas-Guyon H, Burgeot T, Renault T. Pollutant effects on Pacific oyster, Crassostrea gigas (Thunberg), hemocytes: screening of 23 molecules using flow cytometry. Cell Biol Toxicol. 2006;22:1–14.PubMedCrossRefGoogle Scholar
  26. Galimany E, Sunila I, Hégaret H, Ramón M, Wikfors GH. Pathology and immune response of the blue mussel (Mytilus edulis L.) after an exposure to the harmful dinoflagellate Prorocentrum minimum. Harmful Algae. 2008a;7:630–8.CrossRefGoogle Scholar
  27. Galimany E, Sunila I, Hégaret H, Ramón M, Wikfors GH. Experimental exposure of the blue mussel (Mytilus edulis, L.) to the toxic dinoflagellate Alexandrium fundyense: histopathology, immune responses, and recovery. Harmful Algae. 2008b;7:702–11.CrossRefGoogle Scholar
  28. Gentien P, Arzul G. Exotoxin production by Gyrodinium cf aureolum (Dinophyceae). J Mar Biol Assoc UK. 1990;70:571–81.CrossRefGoogle Scholar
  29. Gentien P, Lunven M, Lazure P, Youenou A, Crassous MP. Motility and autotoxicity in Karenia mikimotoi (Dinophyceae). Phil Trans R Soc B. 2007;362:1937–46.PubMedCrossRefGoogle Scholar
  30. Gomez-Mendikute A, Etxeberria A, Olabarrieta I, Cajaraville MP. Oxygen radicals production and actin filament disruption in bivalve haemocytes treated with benzo(a)pyrene. Mar Environ Res. 2002;54:431–6.PubMedCrossRefGoogle Scholar
  31. Grzebyk D, Denardou A, Berland B, Pouchus YF. Evidence of a new toxin in the red-tide dinoflagellate Prorocentrum minimum. J Plankton Res. 1997;19:1111–24.CrossRefGoogle Scholar
  32. Guillard RRL. Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH, editors. Culture of marine invertebrate animals. New York: Plenum; 1975. p. 26–60.Google Scholar
  33. Guillard RRL, Hargraves PE. Stichochrysis immobilis is a diatom, not a chrysophyte. Phycologia. 1993;32:234–6.CrossRefGoogle Scholar
  34. Guillard RRL, Ryther JH. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Can J Microbiol. 1962;8:229–39.PubMedCrossRefGoogle Scholar
  35. Guillou L, Nezan E, Cueff V, Denn EEL, Cambon-Bonavita MA, Gentien P, et al. Genetic diversity and molecular detection of three toxic dinoflagellate genera (Alexandrium, Dinophysis, and Karenia) from French coasts. Protist. 2002;153:223–38.PubMedCrossRefGoogle Scholar
  36. Haberkorn H. Impact du dinoflagellé toxique, Alexandrium minutum, sur l’huître creuse, Crassostrea gigas: approche intégrative. Ph.D. thesis. Université de Bretagne Occidentale. 2009.Google Scholar
  37. Haberkorn H, Lambert C, Le Goïc N, Moal J, Suquet M, Guéguen M, et al. Effects of Alexandrium minutum exposure on nutrition-related processes and reproductive output in oysters Crassostrea gigas. Harmful Algae. 2010a;9:427–39.CrossRefGoogle Scholar
  38. Haberkorn H, Lambert C, Le Goïc N, Guéguen M, Moal J, Palacios E, et al. Effects of Alexandrium minutum exposure on physiological and hematological variables of diploid and triploid oysters, Crassostrea gigas. Aquat Toxicol. 2010b;97:96–108.PubMedCrossRefGoogle Scholar
  39. Hamoutene D, Payne JF, Rahimtula A, Lee K. Effect of water soluble fractions of diesel and an oil spill dispersant (Corexit 9527) on immune responses in mussels. Bull Environ Contam Toxicol. 2004;72:1260–7.PubMedCrossRefGoogle Scholar
  40. Hannam ML, Bamber SD, Galloway TS, Moody AJ, Jones MB. Effects of the model PAH phenanthrene on immune function and oxidative stress in the haemolymph of the temperate scallop Pecten maximus. Chemosphere. 2010a;78(7):779–84.PubMedCrossRefGoogle Scholar
  41. Hannam ML, Bamber SD, Galloway TS, Moody AJ, Jones MB. Functional immune response in Pecten maximus: combined effects of a pathogen-associated molecular pattern and PAH exposure. Fish Shellfish Immunol. 2010b;28(1):249–52.PubMedCrossRefGoogle Scholar
  42. Hégaret H, Wikfors GH. Time-dependent changes in hemocytes of eastern oysters, Crassostrea virginica, and northern bay scallops, Argopecten irradians irradians, exposed to a cultured strain of Prorocentrum minimum. Harmful Algae. 2005a;4:187–99.CrossRefGoogle Scholar
  43. Hégaret H, Wikfors GH. Effects of natural and field-simulated blooms of the dinoflagellate Prorocentrum minimum upon hemocytes of eastern oysters, Crassostrea virginica, from two different populations. Harmful Algae. 2005b;4:201–9.CrossRefGoogle Scholar
  44. Hégaret H, Wikfors GH, Soudant P. Flow-cytometric analysis of haemocytes from eastern oysters, Crassostrea virginica, subjected to a sudden temperature elevation I. Haemocyte types and morphology. J Exper Mar Biol Ecol. 2003a;293:237–48.CrossRefGoogle Scholar
  45. Hégaret H, Wikfors GH, Soudant P. Flow cytometric analysis of haemocytes from eastern oysters, Crassostrea virginica, subjected to a sudden temperature elevation II. Haemocyte functions: aggregation, viability, phagocytosis, and respiratory burst. J Exper Mar Biol Ecol. 2003b;293:249–65.CrossRefGoogle Scholar
  46. Hégaret H, Wikfors GH, Soudant P, Lambert C, Shumway SE, Bérard JB, et al. Toxic dinoflagellates (Alexandrium fundyense and A. catenella) have minimal apparent effect on oyster hemocytes. Mar Biol. 2007a;152:441–7.CrossRefGoogle Scholar
  47. Hégaret H, da Silva P, Wikfors GH, Lambert C, De Bettignies T, Shumway SE, et al. Hemocyte responses of Manila clams, Ruditapes philippinarum, with varying parasite, Perkinsus olseni, severity to toxic-algal exposures. Aquat Toxicol. 2007b;84:469–79.PubMedCrossRefGoogle Scholar
  48. Hégaret H, Wikfors GH, Shumway SE. Diverse feeding responses of five species of bivalve mollusc when exposed to three species of harmful algae. J Shellfish Res. 2007c;24:549–59.CrossRefGoogle Scholar
  49. Hégaret H, Wikfors GH, Shumway SE. In vitro interactions between several species of harmful algae and hemocytes of bivalve molluscs. In: Moestrup O, editor. Proceedings of the 12th International Conference on Harmful Algae, Copenhagen, Denmark. 2008a. p. 356–359.Google Scholar
  50. Hégaret H, Shumway SE, Wikfors GH, Pate S, Burkholder JM. Potential transport of harmful algae through relocation of bivalve molluscs. Mar Ecol Prog Ser. 2008b;361:169–79.CrossRefGoogle Scholar
  51. Hégaret H, da Silva P, Sunila I, Shumway SE, Dixon MS, Alix JH, et al. Perkinsosis in the Manila clam Ruditapes philippinarum affects responses to the harmful-alga, Prorocentrum minimum. J Exper Mar Biol Ecol. 2009;371:112–20.CrossRefGoogle Scholar
  52. Hégaret H, Smolowitz RM, Sunila I, Shumway SE, Alix JH, Dixon MS, et al. Combined effects of a parasite, QPX, and the harmful-alga, Prorocentrum minimum on northern quahogs, Mercenaria mercenaria. Mar Environ Res. 2010;69:337–44.PubMedCrossRefGoogle Scholar
  53. Hine PM. The inter-relationships of bivalve haemocytes. Fish Shellfish Immunol. 1999;9:367–85.CrossRefGoogle Scholar
  54. Hoagland P, Anderson DM, Kaoru Y, White AW. The economic effects of harmful algal blooms in states: estimates, assessment issues, and information. Estuaries. 2002;25:819–37.CrossRefGoogle Scholar
  55. Janeway CA. The role of microbial pattern recognition in self: nonself discrimination in innate and adaptive immunity. In: Hoffmann JA, Janeway CA, Natori S, editors. Phylogenetic perspectives in immunity: the insect host defence. Austin: Landes; 1994. p. 115–22.Google Scholar
  56. Jenkinson I, Arzul G. Mitigation by cysteine compounds of rheotoxicity, cytotoxicity and fish mortality caused by the dinoflagellates, Gymnodinium mikimotoi and G. maguelonnense. In: Hallegraeff G, editor. Harmful algal blooms. Paris: Intergovernmental Oceanographic Commission of UNESCO; 2000. p. 461–4.Google Scholar
  57. Landsberg JH. The effects of harmful algal blooms on aquatic organisms. Rev Fish Sci. 2002;10:113–390.CrossRefGoogle Scholar
  58. Lapeyre JF, Chu FLE, Meyers JM. Hemocytic and humoral activities of eastern and Pacific oysters following challenge by the protozoan Perkinsus marinus. Fish Shellfish Immunol. 1995;5:179–90.CrossRefGoogle Scholar
  59. Leibovitz L, Schott EF, Karney RC. Diseases of wild, captive and cultured scallops. J World Maricult Soc. 1984;15:269–83.Google Scholar
  60. Loker ES, Adema CM, Zhang SM, Kepler TB. Invertebrate immune systems—not homogeneous, not simple, not well understood. Immunol Rev. 2004;198(1):10–24.PubMedCrossRefGoogle Scholar
  61. Luckenbach MW, Sellner KG, Shumway SE, Greene K. Effects of two bloom forming dinoflagellates, Prorocentrum minimum and Gyrodinium uncatenum, on the growth and survival of the eastern oyster, Crassostrea virginica (Gmelin 1791). J Shellfish Res. 1993;12:411–5.Google Scholar
  62. Lush GJ, Hallegraeff GM, Munday BL. High toxicity of the red tide dinoflagellate Alexandrium minutum to the brine shrimp Artemia salina. In: Yasumoto T, Oshima Y, Fukuyo Y, editors. Harmful and toxic algal blooms. Paris: UNESCO; 1996. p. 389–92.Google Scholar
  63. Mackenzie L, Haywood A, Adamson J, Truman P, Till D. Gymnodimine contamination in shellfish in New Zealand. In: Yasumoto T, Oshima Y, Fukuyo Y, editors. Harmful and toxic algal blooms. Paris: Intergovernmental Oceanographic Commission of UNESCO; 1996. p. 97–100.Google Scholar
  64. Marshall JA, de Salas M, Oda T, Hallegraeff G. Superoxide production by marine microalgae—I. Survey of 37 species from 6 classes. Mar Biol. 2005a;147:533–40.CrossRefGoogle Scholar
  65. Marshall JA, Ross T, Pyecroft S, Hallegraeff G. Superoxide production by marine microalgae—II. Towards understanding ecological consequences and possible functions. Mar Biol. 2005b;147:541–9.CrossRefGoogle Scholar
  66. Matsuyama Y, Shumway SE. Impacts of harmful algal blooms on shellfisheries aquaculture. In: Burnell G, Allan G, eds. New technologies in aquaculture. Improving production efficiency, quality and environmental management. Cambridge: Woodhead. 2009; 580–609.Google Scholar
  67. Medzhitov R, Janeway CA. Decoding the patterns of self and nonself by the innate immune system. Science. 2002;296:298–300.PubMedCrossRefGoogle Scholar
  68. Morga B, Arzul I, Chollet B, Renault T. Infection with the protozoan parasite Bonamia ostreae modifies in vitro haemocyte activities of flat oyster Ostrea edulis. Fish Shellfish Immunol. 2009;26(6):836–42.PubMedCrossRefGoogle Scholar
  69. Oliver LM, Fisher WS, Winstead JT, Hemmer BL, Long E. Relationships between tissue contaminants and defense-related characteristics of oysters (Crassostrea virginica) from five Florida bays. Aquat Toxicol. 2001;55:203–22.PubMedCrossRefGoogle Scholar
  70. Pearce I, Handlinger JH, Hallegraeff GM. Histopathology in Pacific oyster (Crassostrea gigas) spat caused by the dinoflagellate Prorocentrum rhathymum. Harmful Algae. 2005;4:61–74.CrossRefGoogle Scholar
  71. Persson A, Smith BC, Wikfors GH, Quilliam M. Grazing on toxic Alexandrium fundyense resting cysts and vegetative cells by the eastern oyster (Crassostrea virginica). Harmful Algae. 2006;5:678–84.CrossRefGoogle Scholar
  72. Rensel JE, Whyte JNC. Finfish mariculture and harmful algal blooms. In: Hallegraeff G, Anderson DM, Cembella A, editors. Manual on harmful microalgae. Paris: UNESCO; 2004. p. 693–722.Google Scholar
  73. Rowley AF, Powell A. Invertebrate immune systems specific, quasi-specific, or nonspecific? J Immunol. 2007;179:7209–14.PubMedGoogle Scholar
  74. Sauvé S, Brousseau P, Pellerin J, Morin Y, Senecal L, Goudreau P, et al. Phagocytic activity of marine and freshwater bivalves: in vitro exposure of hemocytes to metals (Ag, Cd, Hg and Zn). Aquat Toxicol. 2002;58:189–200.PubMedCrossRefGoogle Scholar
  75. Seki T, Satake M, Mackenzie L, Kaspar HF. T. Y. Gymnodimine, a new marine toxin of unprecedented structure isolated from New Zealand oysters and the dinoflagellate, Gymnodinium sp. Tetrahedron Lett. 1995;36:7093–6.CrossRefGoogle Scholar
  76. Seki T, Satake M, Mackenzie L, Kaspar HF, Yasumoto T. Gymnodimine, a novel toxic imine isolated from the Foveaux strait oysters and Gymnodinium sp. In: Yasumoto T, Oshima Y, Fukuyo Y, editors. Harmful and toxic algal blooms. Paris: Intergovernmental Oceanographic Commission of UNESCO; 1996. p. 495–8.Google Scholar
  77. Shumway SE. A review of the effects of algal blooms on shellfish and aquaculture. J World Aquac Soc. 1990;21:65–104.CrossRefGoogle Scholar
  78. Shumway SE, Cucci TL. The effect of the toxic Protogonyaulax tamarensis on the feeding and behavior of bivalve molluscs. Aquat Toxicol. 1987;10:9–27.CrossRefGoogle Scholar
  79. Shumway SE, Sherman-Caswell S, Hurst JW. Paralytic shellfish poisoning in Maine: monitoring a monster. J Shellfish Res. 1988;7:643–52.Google Scholar
  80. Shumway SE, Burkholder JM, Springer J. Effects of the estuarine dinoflagellate Pfiesteria shumwayae (Dinophyceae) on survival and grazing activity of several shellfish species. Harmful Algae. 2006;5(4):442–58.CrossRefGoogle Scholar
  81. Smolowitz R, Shumway SE. Possible cytotoxic effects of the dinoflagellate, Gyrodinium aureolum, on juvenile bivalve mollusks. Aquac Intern. 1997;5(4):291–300.CrossRefGoogle Scholar
  82. Sola F, Masoni A, Fossat B, Porthe-Nibelle J, Gentien P, Bodennec G. Toxicity of fatty acid 18: 5n3 from Gymnodinium cf. mikimotoi: I. Morphological and biochemical aspects on Dicentrarchus labrax gills and intestine. J Appl Toxicol. 1999;19:279–84.PubMedCrossRefGoogle Scholar
  83. Tang YZ, Kong LS, Holmes MJ. Dinoflagellate Alexandrium leei (Dinophyceae) from Singapore coastal waters produces a water-soluble ichthyotoxin. Mar Biol. 2007;150:541–9.CrossRefGoogle Scholar
  84. Townsend DW, Pettigrew NR, Thomas AC. On the nature of Alexandrium fundyense blooms in the Gulf of Maine. Deep-Sea Res Part Ii-Topical Studies in Oceanography. 2005;52:2603–30.CrossRefGoogle Scholar
  85. Twiner MJ, Dixon SJ, Trick CG. Extracellular organics from specific cultures of Heterosigma akashiwo (Raphidophyceae) irreversibly alter respiratory activity in mammalian cells. Harmful Algae. 2004;3:173–82.CrossRefGoogle Scholar
  86. Twiner MJ, Chidiac P, Dixon SJ, Trick CG. Extracellular organic compounds from the ichthyotoxic red tide alga Heterosigma akashiwo elevate cytosolic calcium and induce apoptosis in Sf9 cells. Harmful Algae. 2005;4:789–800.CrossRefGoogle Scholar
  87. Uchida T, Toda S, Matsuyama Y, Yamaguchi M, Kotani Y, Honjo T. Interactions between the red tide dinoflagellates Heterocapsa circularisquama and Gymnodinium mikimotoi in laboratory culture. J Exper Mar Biol Ecol. 1999;241:285–99.CrossRefGoogle Scholar
  88. Ukeles R. Continuous culture—a method for the production of unicellular algal foods. In: Stein JR, editor. Handbook of phycological methods: culture methods and growth measurements. Cambridge: Cambridge University Press; 1973. p. 233–55.Google Scholar
  89. Veldhuis MJW, Cucci TL, Sieracki ME. Cellular DNA content of marine phytoplankton using two new fluorochromes: taxonomic and ecological implications. J Phycol. 1997;33:527–41.CrossRefGoogle Scholar
  90. Villalba A, Reece KS, Ordas MC, Casas SM, Figueras A. Perkinsosis in molluscs: a review. Aquat Liv Res. 2004;17:411–32.CrossRefGoogle Scholar
  91. Wang LP, Yan T, Zhou MJ. Impacts of HAB species Heterosigma akashiwo on early development of the scallop Argopecten irradians Lamarck. Aquac. 2006;255:374–83.CrossRefGoogle Scholar
  92. Wikfors GH. A review and new analysis of trophic interactions between Prorocentrum minimum and clams, scallops, and oysters. Harmful Algae. 2005;4:585–92.CrossRefGoogle Scholar
  93. Wikfors GH, Smolowitz RM. Detrimental effects of a Prorocentrum isolate upon hard clams and bay scallops in laboratory feeding studies. In: Smayda TJ, Shimizu Y, editors. Toxic phytoplankton blooms in the sea. New York: Elsevier; 1993. p. 447–52.Google Scholar
  94. Wikfors GH, Smolowitz RM. Experimental and histological studies of four life-history stages of the eastern oyster, Crassostrea virginica, exposed to a cultured strain of the dinoflagellate Prorocentrum minimum. Biol Bull. 1995;188:313–28.CrossRefGoogle Scholar
  95. Yan T, Zhou MJ, Fu M, Wang Y, Yu F, Li RC. The toxicity study on Heterosigma akashiwo using an Artemia bioassay. In: Hall S, Etheridge S, Anderson D, Kleindinst J, Zhu M, Zou Y, editors. Harmful algae management and mitigation, APEC #204-MR-04.2. Singapore: Asia-Pacific Economic Cooperation; 2004. p. 220–5.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Hélène Hégaret
    • 1
    • 2
  • Patricia Mirella da Silva
    • 2
    • 4
  • Gary H. Wikfors
    • 3
  • Hansy Haberkorn
    • 2
  • Sandra E. Shumway
    • 1
  • Philippe Soudant
    • 2
  1. 1.Department of Marine SciencesUniversity of ConnecticutGrotonUSA
  2. 2.Université de Bretagne Occidentale—IUEM, LEMAR CNRS UMR 6539PlouzanéFrance
  3. 3.Northeast Fisheries Science Center, National Marine Fisheries ServiceNOAAMilfordUSA
  4. 4.Departamento de Biologia MolecularCentro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Cidade UniversitáriaJoão PessoaBrazil

Personalised recommendations