Skip to main content
Log in

Dibutyltin activates MAP kinases in human natural killer cells, in vitro

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Previous studies have shown that dibutyltin (DBT) interferes with the function of human natural killer (NK) cells, diminishing their capacity to destroy tumor cells, in vitro. DBT is a widespread environmental contaminant and has been found in human blood. As NK cells are our primary immune defense against tumor cells, it is important to understand the mechanism by which DBT interferes with their function. The current study examines the effects of DBT exposures on key enzymes in the signaling pathway that regulates NK responsiveness to tumor cells. These include several protein tyrosine kinases (PTKs), mitogen-activated protein kinases (MAPKs), and mitogen-activated protein kinase kinases (MAP2Ks). The results showed that in vitro exposures of NK cells to DBT had no effect on PTKs. However, exposures to DBT for as little as 10 min were able to increase the phosphorylation (activation) of the MAPKs. The DBT-induced activations of these MAPKs appear to be due to DBT-induced activations of the immediate upstream activators of the MAPKs, MAP2Ks. The results suggest that DBT-interference with the MAPK signaling pathway is a consequence of DBT exposures, which could account for DBT-induced decreases in NK function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aluoch AO, Whalen MM. Tributyltin-induced effects on MAP kinases p38 and p44/42 in human natural killer cells. Toxicology. 2005;209:263–77.

    Article  CAS  PubMed  Google Scholar 

  • Aluoch AO, Odman-Ghazi SO, Whalen MM. Alteration of an essential NK cell signaling pathway by low doses of tributyltin in human natural killer cells. Toxicology. 2006;224:229–37.

    Article  CAS  PubMed  Google Scholar 

  • Aluoch AO, Odman-Ghazi SO, Whalen MM. Pattern of MAP kinases p44/42 and JNK activation by non-lethal doses of tributyltin in human natural killer cells. Arch Toxicol. 2007;81:271–7.

    Article  CAS  PubMed  Google Scholar 

  • Anderson NG, Maller JL, Tonks NK, Sturgill TW. Requirement for integration of signals from two distinct phosphorylation pathways for activation of MAP kinase. Nature. 1990;343:651–3.

    Article  CAS  PubMed  Google Scholar 

  • Bajpai A, Brahmi Z. Target cell-induced inactivation of cytolytic lymphocytes. Role and regulation of CD45 and calyculin A-inhibited phosphatase in response to interleukin-2. J Biol Chem. 1994;269:18864–9.

    CAS  PubMed  Google Scholar 

  • Biron CA. Activation and function of natural killer cell responses during viral infections. Curr Opin Immunol. 1997;9:24–34.

    Article  CAS  PubMed  Google Scholar 

  • Camps M, Nichols A, Arkinstall S. Dual specificity phosphatases: a gene family for control of MAP kinase function. FASEB J. 2000;14:6–16.

    CAS  PubMed  Google Scholar 

  • Catlin R, Shah H, Bankhurst AD, Whalen MM. Dibutyltin exposure decreases granzyme B and perforin in human natural killer cells. Environ Toxicol Pharmacol. 2005;20:395–403.

    Article  CAS  Google Scholar 

  • Chan G, Hanks T, Fisher K-D. Vav-1 regulates NK T cell development and NK cell cytotoxicity. Eur J Immunol. 2001;31:2403–10.

    Article  CAS  PubMed  Google Scholar 

  • Derijard B, Raingeaud J, Barret T, Wu IH, Han J, Ulevitch RJ, et al. Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms. Science. 1995;267:682–5.

    Article  CAS  PubMed  Google Scholar 

  • Djeu JY, Jiang K, Wei S. A view to a kill: signals triggering cytotoxicity. Clin Cancer Res. 2002;8:636–40.

    CAS  PubMed  Google Scholar 

  • Dudimah FD, Gibson C, Whalen MM. Effect of Dibutyltin (DBT) on ATP levels in human natural killer cells. Environ Toxicol. 2007;22:117–23.

    Article  CAS  PubMed  Google Scholar 

  • Dudimah FD, Griffey D, Wang X, Whalen MM (2009). Activation of p44/42 MAPK plays a role in the TBT-induced loss of human natural killer (NK) cell function. Cell Biol Toxicol (in press)

  • Ema M, Iwase T, Iwase Y, Oyama N, Ogawa Y. Change of embryotoxic susceptibility to di-n-butyltin dichloride in cultured rat embryos. Arch Toxicol. 1996;70:742–8.

    Article  CAS  PubMed  Google Scholar 

  • Epstein RL, Phillippo ET, Harr R, Koscinski W, Vosco G. Organotin residue determination in poultry and turkey sample survey in the United States. J Agric Food Chem. 1991;39:917–21.

    Article  CAS  Google Scholar 

  • Forsyth DS, Weber D, Barlow L. The determination of organotin compounds in fruit juices using gas chromatography-atomic absorption spectrometry. Appl Organomet Chem. 1992a;6:579–85.

    Article  CAS  Google Scholar 

  • Forsyth DS, Weber D, Cldroux C. Determination of butyltin, cyclohexyltin and phenyltin compounds in beers and wines. Food Addit Contam. 1992b;9:161–9.

    CAS  PubMed  Google Scholar 

  • Gismondi A, Jacobelli J, Mainiero F, Paolini R, Piccoli M, Frati L, et al. Cutting edge: functional role for proline-rich tyrosine kinase 2 in NK cell-mediated natural cytotoxicity. J Immunol. 2000;164:2272–6.

    CAS  PubMed  Google Scholar 

  • Gomez N, Cohen P. Dissection of the protein kinase cascade by which nerve growth factor activates MAP kinases. Nature. 1991;353:170–3.

    Article  CAS  PubMed  Google Scholar 

  • Han J, Lee JD, Jiang Y, Li Z, Feng L, Ulevitch RJ. Characterization of the structure and function of a novel MAP kinase kinase (MKK6). J Biol Chem. 1996;271:2886–91.

    Article  CAS  PubMed  Google Scholar 

  • Ishihara H, Martin BL, Brautigan DL, Karaki H, Ozaki H, Kato Y, et al. Calyculin A and okadaic acid: inhibitors of protein phosphatase activity. Biochem Biophys Res Commun. 1989;159:871–7.

    Article  CAS  PubMed  Google Scholar 

  • Jewett A, Bonavida B. Target induced energy of natural killer cytotoxic function is restricted to the NK-target conjugate subset. Cell Immunol. 1995;160:91–7.

    Article  CAS  PubMed  Google Scholar 

  • Kannan K, Falandyz J. Butyltin residues in sediment, fish, fish-eating birds harbor porpoise and human tissues from the Polish coast of the Baltic Sea. Mar Pollut Bull. 1997;34:203–7.

    Article  CAS  Google Scholar 

  • Kannan K, Guruge KS, Thomas NJ, Tanabe S, Giesy JP. Butyltin residues in southern sea utters (Enhydra lutris nereis) found dead near California coastal waters. Environ Sci Technol. 1998;32:1169–75.

    Article  CAS  Google Scholar 

  • Kannan K, Senthilkumar K, Giesy JP. Occurrence of butyltin compounds in human blood. Environ Sci Technol. 1999;33:1776–9.

    Article  CAS  Google Scholar 

  • Mao L, Yang L, Arora A, Choe ES, Zhang G, Liu Z, et al. Role of protein phosphatase 2A in mGluR5-regulated MEK/ERK phosphorylation in neurons. J Biol Chem. 2005;280:12602–10.

    Article  CAS  PubMed  Google Scholar 

  • Merkord J, Jonas L, Weber H, Kroning G, Nizze H. Acute interstitial pancreatitis in rats induced by dibutyltin dichloride (DBDC) pathogenesis and natural cause of lesions. Pancreas. 1997;15:392–401.

    Article  CAS  PubMed  Google Scholar 

  • Nakashima H, Hori S, Nakazawa H. Determination of dibutyltin and dioctyltin compounds in PVC food containers, wrappage and clothes by reversed phase HPLC with column switching. Eisei Kagaku. 1990;36:155–220.

    Google Scholar 

  • Nielsen JB, Strand J. Hepatic deposition of butyltin in humans. Metal Ions Biol Med. 2002;7:185–8.

    CAS  Google Scholar 

  • Noda T, Morita S, Bab A. Teratogenic effects of various di-n-butyltins with different anions and butyl(3-hydroxyl) tin dilaurate in rats. Toxicology. 1993;85:149–60.

    Article  CAS  PubMed  Google Scholar 

  • Odman-Ghazi SO, Hatcher F, Whalen MM. Expression of functionally relevant cell surface markers in dibutyltin-exposed human natural killer cells. Chem Biol Interact. 2003;146:1–18.

    Article  CAS  PubMed  Google Scholar 

  • Payne DM, Rossomando AJ, Martino P, Erickson AK, Her JH, Shabanowitz J, et al. Identification of the regulatory phosphorylation sites in pp 42/mitogen-activated protein kinase (MAP kinase). EMBO J. 1991;10:885–92.

    CAS  PubMed  Google Scholar 

  • Pearson G, Robinson F, Beers Gibson T, Xu B-E, Karandikar M, Berman K, et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev. 2001;22:153–83.

    Article  CAS  PubMed  Google Scholar 

  • Pieters RH, Bol M, Seinen W, Penninks AH. Cellular and molecular aspects of organotin-induced thymus atrophy. Hum Exp Toxicol. 1994;12:876–9.

    Article  Google Scholar 

  • Roper WL (1992) “Toxicological profile for tin”. U.S. department of health and human services, agency for toxic substances and disease registry

  • Sadiki A-I, Williams DT, Carrier R, Thomas B. Pilot study on the contamination of drinking water by organotin compounds from PVC materials. Chemosphere. 1996;32:2389–98.

    Article  CAS  PubMed  Google Scholar 

  • Trinchieri G. Biology of natural killer cell. Adv Immunol. 1989;47:187–376.

    Article  CAS  PubMed  Google Scholar 

  • Trotta R, Puorro KA, Paroli M, Azzoni L, Abebe B, Eisenlohr LC, et al. Dependence of both spontaneous and antibody-dependent, granule exocytosis-mediated NK cell cytotoxicity on extracellular signal-regulated kinases. J Immunol. 1998;161:6648–56.

    CAS  PubMed  Google Scholar 

  • Trotta R, Fettuciari K, Azzoni L, Abebe B, Puorro KA, Eisenlohr LC, et al. Differential role of p38 and c-Jun N-terminal kinase 1 mitogen-activated protein kinases in NK cell cytotoxicity. J Immunol. 2000;165:1782–9.

    CAS  PubMed  Google Scholar 

  • Vivier E, Nunes JA, Vely F. Natural killer cell signaling pathways. Science. 2004;306:1517–9.

    Article  CAS  PubMed  Google Scholar 

  • Wei S, Gamero AM, Liu JH, Daulton AA, Valkov NI, Trapani JA, et al. Control of lytic function by mitogen-activated protein kinase/extracellular regulatory kinase 2 (ERK2) in a human natural killer cell line: identification of perforin and granzyme B mobilization by functional ERK2. J Exp Med. 1998;187:1753–65.

    Article  CAS  PubMed  Google Scholar 

  • Whalen MM, Loganathan BG, Kannan K. Immunotoxicity of environmentally relevant concentrations of butyltins on human natural killer cells in vitro. Environ Res. 1999;81:108–16.

    Article  CAS  PubMed  Google Scholar 

  • Whalen MM, Green SA, Longanathan BG. Brief butyltin exposure induces irreversible inhibition of the cytotoxic function on human natural killer cells, In vitro. Environ Res. 2002;88:19–29.

    Article  CAS  PubMed  Google Scholar 

  • Yamada S, Fuji Y, Mikami E, Kawamura N, Hayakawa J. Small-scale survey of organotin compounds in household commodities. J AOAC Int. 1993;76:436–41.

    CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by Grant S06GM008092-34 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret M. Whalen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Odman-Ghazi, S.O., Abraha, A., Isom, E.T. et al. Dibutyltin activates MAP kinases in human natural killer cells, in vitro. Cell Biol Toxicol 26, 469–479 (2010). https://doi.org/10.1007/s10565-010-9157-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-010-9157-3

Keywords

Navigation