Skip to main content
Log in

Life and death in aluminium-exposed cultures of rat lactotrophs studied by flow cytometry

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Prolonged exposure to aluminium may impact health. Aluminium’s deleterious effects are mostly attributed to its selective accumulation in particular organs and cell types. Occupational exposure to aluminium is allied with a reduced level of serum prolactin, a stress peptide hormone mainly synthesised and secreted by the anterior pituitary lactotrophs. Our aim was to study the effect of aluminium on the viability of rat lactotrophs in primary suspension cultures where multicellular aggregates tend to form, comprising approximately two thirds of the total cell population as confirmed by confocal microscopy. Flow cytometric light scattering of calcein acetoxymethyl ester and ethidium homodimer-1 labelled cells was used to define subpopulations of live and dead cells in heterogeneous suspensions comprised of single cells and multicellular aggregates of distinct size. Concentration-dependent effects of AlCl3 were observed on aggregate size and cell survival. After 24-h exposure to 3 mM AlCl3, viability of single cells declined from 5% to 3%, while in multicellular aggregates, viability declined from 23% to 20%. The proportion of single cells increased from 30% to 42% within the same concentration range, while in large aggregates, the proportion remained approximately constant representing 35% of the cell suspension. In large aggregates, cell viability (75%) remained unaltered after exposure to AlCl3 concentrations up to 300 μM, while in single cells, viability was halved at 30 μM. In conclusion, our finding indicates that prolonged exposure to aluminium may lead to significant loss of pituitary cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

EthD:

Ethidium homodimer-1

FS:

Forward angle light scattering

LDH:

Lactate dehydrogenase

SS:

Side angle light scattering

References

  • Abreo K, Jangula J, Jain SK, Sella M, Glass J. Aluminum uptake and toxicity in cultured mouse hepatocytes. J Am Soc Nephrol. 1991;1:1299–304.

    CAS  PubMed  Google Scholar 

  • Alessio L, Apostoli P, Ferioli A, Di Sipio I, Mussi I, Rigosa C. Behaviour of biological indicators of internal dose and some neuro-endocrine tests in aluminium workers. Med Lav. 1989;80:290–300.

    CAS  PubMed  Google Scholar 

  • Alfrey AC, LeGendre GR, Keahny WD. The dialysis encephalopathy syndrome—possible aluminum intoxication. N Engl J Med. 1976;294:184–8.

    Article  CAS  PubMed  Google Scholar 

  • Allen VG, Fontenot JP, Rahnema SH. Influence of aluminum-citrate and citric acid on tissue mineral composition in wether sheep. J Anim Sci. 1991;69:792–800.

    CAS  PubMed  Google Scholar 

  • Aremu DA, Meshitsuka S. Accumulation of aluminum by primary cultured astrocytes from aluminum amino acid complex and its apoptotic effect. Brain Res. 2005;1031:284–96.

    Article  CAS  PubMed  Google Scholar 

  • Authier FJ, Cherin P, Creange A, Bonnotte B, Ferrer X, Abdelmoumni A, et al. Central nervous system disease in patients with macrophagic myofasciitis. Brain. 2001;124:974–83.

    Article  CAS  PubMed  Google Scholar 

  • Banasik A, Lankoff A, Piskulak A, Adamowska K, Lisowska H, Wojcik A. Aluminum-induced micronuclei and apoptosis in human peripheral-blood lymphocytes treated during different phases of the cell cycle. Environ Toxicol. 2005;20:402–6.

    Article  CAS  PubMed  Google Scholar 

  • Ben-Jonathan N, Liby K, McFarland M, Zinger M. Prolactin as an autocrine/paracrine growth factor in human cancer. Trends Endocrinol Metab. 2002;13:245–50.

    Article  CAS  PubMed  Google Scholar 

  • Ben-Tabou S, Keller E, Nussinovitch I. Mechanosensitivity of voltage-gated calcium currents in rat anterior pituitary cells. J Physiol. 1994;476:29–39.

    CAS  PubMed  Google Scholar 

  • Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly PA. Prolactin (PRL) and its receptors: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev. 1998;19:225–68.

    Article  CAS  PubMed  Google Scholar 

  • Burrows HL, Douglas KR, Seasholtz AF, Camper SA. Genealogy of the anterior pituitary gland: tracing a family tree. Trends Endocrinol Metab. 1999;10:343–52.

    Article  CAS  PubMed  Google Scholar 

  • Exley C. Aluminium and Alzheimer’s disease: the science that describes the link. Amstersdam: Elsevier Science; 2001.

    Google Scholar 

  • Exley C, Esiri MM. Severe cerebral congophilic angiopathy coincident with increased brain aluminium in a resident of Camelford, Cornwall, UK. J Neurol Neurosurg Psychiatr. 2006;77:877–9.

    Article  CAS  PubMed  Google Scholar 

  • Fu H, Hu Q, Lin Z, Ren T, Song H, Cai C, et al. Aluminum-induced apoptosis in cultured cortical neurons and its effect on SAPK/JNK signal transduction pathway. Brain Res. 2003;980:11–23.

    Article  CAS  PubMed  Google Scholar 

  • Galoyan AA, Shakhlamov VA, Aghajanov MI, Vahradyan HG. Hypothalamic proline-rich polypeptide protects brain neurons in aluminum neurotoxicosis. Neurochem Res. 2004;29:1349–57.

    Article  CAS  PubMed  Google Scholar 

  • Hoorens A, Van de Casteele M, Klöppel G, Pipeleers D. Glucose promotes survival of rat pancreatic β cells by activating synthesis of proteins which suppress a constitutive apoptotic program. J Clin Invest. 1996;98:1568–74.

    Article  CAS  PubMed  Google Scholar 

  • Johnson VJ, Kim SH, Sharma RP. Aluminum-maltolate induces apoptosis and necrosis in neuro-2a cells: potential role for p53 signaling. Toxicol Sci. 2005;83:329–39.

    Article  CAS  PubMed  Google Scholar 

  • Lévesque A, Paquet A, Pagé M. Measurement of tumor necrosis factor activity by flow cytometry. Cytometry. 1995;20:181–4.

    Article  PubMed  Google Scholar 

  • Lévesque L, Mizzen CA, McLachlan DR, Fraser PE. Ligand specific effects on aluminum incorporation and toxicity in neurons and astrocytes. Brain Res. 2000;877:191–202.

    Article  PubMed  Google Scholar 

  • Lukiw WJ, Percy ME, Kruck TP. Nanomolar aluminum induces pro-inflammatory and pro-apoptotic gene expression in human brain cells in primary culture. J Inorg Biochem. 2005;99:1895–8.

    Article  CAS  PubMed  Google Scholar 

  • Mizoroki T, Meshitsuka S, Maeda S, Murayama M, Sahara N, Takashima A. Aluminum induces tau aggregation in vitro but not in vivo. J Alzheimers Dis. 2007;11:419–27.

    CAS  PubMed  Google Scholar 

  • Müller JP, Bruinink A. Neurotoxic effects of aluminium on embryonic chick brain cultures. Acta Neuropathol. 1994;88:359–66.

    Article  PubMed  Google Scholar 

  • Nayak P. Aluminum: impacts and disease. Environ Res. 2002;89:101–15.

    Article  CAS  PubMed  Google Scholar 

  • Niemoeller OM, Kiedaisch V, Dreischer P, Wieder T, Lang F. Stimulation of eryptosis by aluminium ions. Toxicol Appl Pharmacol. 2006;217:168–75.

    Article  CAS  PubMed  Google Scholar 

  • Petrik MS, Wong MC, Tabata RC, Garry RF, Shaw CA. Aluminum adjuvant linked to Gulf War illness induces motor neuron death in mice. Neuromolecular Med. 2007;9:83–100.

    Article  CAS  PubMed  Google Scholar 

  • Platt B, Drysdale AJ, Nday C, Roloff EL, Drever BD, Salifoglou A. Differential toxicity of novel aluminium compounds in hippocampal culture. Neurotoxicology. 2007;28:576–86.

    Article  CAS  PubMed  Google Scholar 

  • Proesmans M, Van Bael A, Andries M, Denef C. Mitogenic effects of nerve growth factor on different cell types in reaggregate cell cultures of immature rat pituitary. Mol Cell Endocrinol. 1997;134:119–27.

    Article  CAS  PubMed  Google Scholar 

  • Reusche E, Lindner B, Arnholdt H. Widespread aluminium deposition in extracerebral organ systems of patients with dialysis-associated encephalopathy. Virchows Arch. 1994;424:105–12.

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Iglesias S, Soto-Otero R, Iglesias-González J, Barciela-Alonso MC, Bermejo-Barrera P, Méndez-Alvarez E. Analysis of brain regional distribution of aluminium in rats via oral and intraperitoneal administration. J Trace Elem Med Biol. 2007;21:31–4.

    Article  PubMed  CAS  Google Scholar 

  • Sargazi M, Roberts NB, Shenkin A. In vitro studies of aluminium-induced toxicity on kidney proximal tubular cells. J Inorg Biochem. 2001;87:37–43.

    Article  CAS  PubMed  Google Scholar 

  • Savory J, Ghribi O. Can studies of aluminum toxicity in vivo and in vitro provide relevant information on the pathogenesis and etiology of Alzheimer’s disease? J Alzheimers Dis. 2007;11:429–30.

    CAS  PubMed  Google Scholar 

  • Savory J, Herman MM, Ghribi O. Mechanisms of aluminum-induced neurodegeneration in animals: implications for Alzheimer’s disease. J Alzheimers Dis. 2006;10:135–44.

    PubMed  Google Scholar 

  • Suárez-Fernández MB, Soldado AB, Sanz-Medel A, Vega JA, Novelli A, Férnandez-Sánchez MT. Aluminum-induced degeneration of astrocytes occurs via apoptosis and results in neuronal death. Brain Res. 1999;835:125–36.

    Article  PubMed  Google Scholar 

  • Toimela T, Tähti H. Mitochondrial viability and apoptosis induced by aluminum, mercuric mercury and methylmercury in cell lines of neural origin. Arch Toxicol. 2004;78:565–74.

    Article  CAS  PubMed  Google Scholar 

  • Walker VR, Sutton RA, Meirav O, Sossi V, Johnson R, Klein J, et al. Tissue disposition of 26aluminum in rats measured by accelerator mass spectrometry. Clin Invest Med. 1994;17:420–5.

    CAS  PubMed  Google Scholar 

  • Walton JR. A bright field/fluorescent stain for aluminum: its specificity, validation, and staining characteristics. Biotech Histochem. 2004;79:169–76.

    Article  CAS  PubMed  Google Scholar 

  • Yokel RA. Brain uptake, retention, and efflux of aluminum and manganese. Environ Health Perspect. 2002;110:699–704.

    CAS  PubMed  Google Scholar 

  • Yokel RA, Rhineheimer SS, Sharma P, Elmore D, McNamara PJ. Entry, half-life, and desferrioxamine-accelerated clearance of brain aluminum after a single 26Al exposure. Toxicol Sci. 2001;64:77–82.

    CAS  PubMed  Google Scholar 

  • Zatta P, Favarato M, Nicolini M. Deposition of aluminium in brain tissues of rats exposed to inhalation of aluminium acetylacetonate. NeuroReport. 1993;4:1119–22.

    CAS  PubMed  Google Scholar 

  • Zhang QL, Boscolo P, Niu PY, Wang F, Shi YT, Zhang L, et al. How do rat cortical cells cultured with aluminum die: necrosis or apoptosis? Int J Immunopathol Pharmacol. 2008;21:107–15.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Higher Education, Sciences and Technology of the Republic of Slovenia [P3 310 381, Z3 7476 1683 and BI-PT/06-07-002], the GRICES of the Portuguese Ministry of Sciences, Technology and High Education [4.1.1 Eslovénia] and the FCT of the Portuguese Ministry of Sciences, Technology and High Education [SFRH/BD/41217/2007 to A.I.C., SFRH/BD27467/2006 to E.R. and SFRH/BPD/14677/2003 to V.S.S].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula P. Gonçalves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calejo, A.I., Rodriguez, E., Silva, V.S. et al. Life and death in aluminium-exposed cultures of rat lactotrophs studied by flow cytometry. Cell Biol Toxicol 26, 341–353 (2010). https://doi.org/10.1007/s10565-009-9147-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-009-9147-5

Keywords

Navigation