Skip to main content

Advertisement

Log in

Selection for methotrexate resistance in mammalian cells bearing a Drosophila dihydrofolate reductase transgene

Methotrexate resistance in transgenic mammalian cells

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Antifolates, such as methotrexate (MTX), are the treatment of choice for numerous cancers. MTX inhibits dihydrofolate reductase (DHFR), which is essential for cell growth and proliferation. Mammalian cells can acquire resistance to antifolate treatment through a variety of mechanisms but decreased antifolate titers due to changes in drug efflux or influx, or alternatively, the amplification of the DHFR gene are the most commonly acquired resistance mechanisms. In Drosophila, however, a resistant phenotype has only been observed to occur by mutation resulting in a MTX-resistant DHFR. It is unclear if differences in gene structure and/or genome organization between Drosophila and mammals contribute to the observed differences in acquired drug resistance. To investigate if gene structure is involved, Drosophila Dhfr cDNA was transfected into a line of CHO cells that do not express endogenous DHFR. These transgenic cells, together with wild-type CHO cells, were selected for 19 months for resistance to increasing concentrations of MTX, from 50- to 200-fold over the initial concentration. Since Drosophila Dhfr appears to have been amplified several fold in the selected transgenic mammalian cells, a difference in genome organization may contribute to the mechanism of MTX resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AP:

Aminopterin

CHO:

Chinese hamster ovary

DHFR:

Dihydrofolate reductase

MTX:

Methotrexate

PMA:

Pyromethamine

TMP:

Trimethoprim

References

  • Affleck JG, Al-Batayneh KM, Neumann K, Cole SPC, Walker VK. Drosophila dihydrofolate reductase mutations confer antifolate resistance to mammalian cells. Eur J Pharmacol. 2006;529:71–8. doi:10.1016/j.ejphar.2005.10.054.

    Article  CAS  PubMed  Google Scholar 

  • Assaraf YG. The role of multidrug resistance efflux transporters in antifolate resistance and folate homeostatsis. Drug Resist Updat. 2006;9:227–46. doi:10.1016/j.drup. 2006.09.001.

    Article  CAS  PubMed  Google Scholar 

  • Assaraf YG. Molecular basis of antifolate resistance. Cancer Metastasis Rev. 2007;26:153–81. doi:10.1007/s10555-007-9049-z.

    Article  CAS  PubMed  Google Scholar 

  • Assaraf YG, Schimke RT. Identification of methotrexate transport deficiency in mammalian cells using fluoresceinated methotrexate and flow cytometry. Proc Natl Acad Sci U S A. 1987;84:7154–8. doi:10.1073/pnas.84.20.7154.

    Article  CAS  PubMed  Google Scholar 

  • Banerjee D, Schweitzer BI, Volkenandt M, Li M, Waltham M, Mineishi S, et al. Transfection with a cDNA encoding a Ser31 or Ser34 mutant human dihydrofolate reductase into Chinese hamster ovary and mouse marrow progenitor cells confers methotrexate resistance. Gene. 1994;139:269–74. doi:10.1016/0378-1119(94) 90768-4.

    Article  CAS  PubMed  Google Scholar 

  • Bertino JR, Donohue DR, Gabrio BW, Silber R, Alenty A, Meyer M, et al. Increased levels of dihydrofolate reductase in leucocytes of patients treated with amethopterin. Nature. 1962;193:140–2. doi:10.1038/193140a0.

    Article  CAS  PubMed  Google Scholar 

  • Brachat A, Pierrat B, Xynos A, Brecht K, Simonen M, Brungger A, et al. A microarray-based, integrated approach to identify novel regulators of cancer drug response and apoptosis. Oncogene. 2002;21:8361–71. doi:10.1038/sj.onc.1206016.

    Article  CAS  PubMed  Google Scholar 

  • Carothers AM, Urlaub G, Ellis N, Chasin LA. Structure of the dihydrofolate reductase gene in Chinese hamster ovary cells. Nucleic Acids Res. 1983;11:1997–2012. doi:10.1093/nar/11.7.1997.

    Article  CAS  PubMed  Google Scholar 

  • Chan DC, Anderson AC. Towards species-specific antifolates. Curr Med Chem. 2006;13:377–98. doi:10.2174/092986706775527938.

    Article  CAS  PubMed  Google Scholar 

  • Dicker AP, Voldenandt M, Schweitzer BI, Banerjee D, Bertino JR. Identification and characterization of a mutation in the dihydrofolate reductase gene from the methotrexate-resistant Chinese hamster ovary cell line Pro-3 MtxRIII. J Biol Chem. 1990;265:8317–21.

    CAS  PubMed  Google Scholar 

  • Duran N, Allahverdiyev AM, Cetiner S. Flow cytometry analysis of the effects of methotrexate and vepesid on the HEp-2 cell cycle. Turk J Med Sci. 2001;31:187–92.

    CAS  Google Scholar 

  • Gilbert DM. Making sense of eukaryotic DNA replication origins. Science. 2001;294:96–100. doi:10.1126/science.1061724.

    Article  CAS  PubMed  Google Scholar 

  • Goker E, Waltham M, Kheradpour A, Trippett T, Mazumdar M, Elisseyeff Y, et al. Amplification of the dihydrofolate reductase gene is a mechanism of acquired resistance to methotrexate in patients with acute lymphoblastic leukemia and is correlated with p53 gene mutations. Blood. 1995;86:677–84.

    CAS  PubMed  Google Scholar 

  • Hao H, Tyshenko MG, Walker VK. Dihydrofolate reductase of Drosophila. Cloning with a rare transcript. J Biol Chem. 1994;269:15179–85.

    CAS  PubMed  Google Scholar 

  • Hooijberg JH, Peters GJ, Assaraf YG, Kathmann I, Priest DG, Bunni MA, et al. The role of mulidrug resistance proteins MRP1, MRP2 and MRP3 in cellular folate homeostasis. Biochem Pharmacol. 2003;65:765–71. doi:10.1016/S0006-2952(02) 01615-5.

    Article  CAS  PubMed  Google Scholar 

  • Huennekens FM. In search of dihydrofolate reductase. Protein Sci. 1996;5:1201–8.

    Article  CAS  PubMed  Google Scholar 

  • Ifergan I, Meller I, Issakov J, Assaraf YG. Reduced folate carrier protein expression in osteosarcome: implications for the prediction of tumor chemosensitivity. Cancer. 2003;98:1958–66. doi:10.1002/cncr.11741.

    Article  CAS  PubMed  Google Scholar 

  • Jun SC, Kim MS, Baik JY, Hwang SO, Lee GM. Selection strategies for the establishment of recombinant Chinese hamster ovary cell line with dihydrofolate reductase-mediated gene amplification. Appl Microbiol Biotechnol. 2005;69:162–9. doi:10.1007/s00253-005-1972-8.

    Article  CAS  PubMed  Google Scholar 

  • Law LW, Boyle PJ. Development of resistance to folic acid antagonists in a transplantable lymphoid leukemia. Proc Soc Exp Biol Med. 1950;74:599–602.

    CAS  PubMed  Google Scholar 

  • Liani E, Rothem L, Bunni MA, Smith CA, Jansen G, Assaraf YG. Loss of folylpoly-gamma-glutamate synthetase activity is a dominant mechanism of resistance to polyglutamylation-dependent novel antifolates in multiple human leukemia sublines. Int J Cancer. 2003;103:587–99. doi:10.1002/ijc.10829.

    Article  CAS  PubMed  Google Scholar 

  • Matherly LH, Goldman DI. Membrane transport of folates. Vitam Horm. 2003;66:403–56. doi:10.1016/S0083-6729(03) 01012-4.

    Article  CAS  PubMed  Google Scholar 

  • Matheson EC, Hogarth LA, Case MC, Irving JA, Hall AG. DHFR and MSH3 co amplification in childhood acute lymphoblastic leukaemia, in vitro and in vivo. Carcinogenesis. 2007;28:1341–6. doi:10.1093/carcin/bgl235.

    Article  CAS  PubMed  Google Scholar 

  • McGuire JJ. Anticancer antifolates: current status and future directions. Curr Pharm Des. 2003;9:2593–613. doi:10.2174/1381612033453712.

    Article  CAS  PubMed  Google Scholar 

  • Mesner LD, Hamlin JL. Specific signals at the 3’ end of the DHFR gene define one boundary of the downstream origin of replication. Genes Dev. 2005;19:1053–66. doi:10.1101/gad.1307105.

    Article  CAS  PubMed  Google Scholar 

  • Neumann K, Al-Batayneh KM, Kuiper MJ, Parsons-Sheldrake J, Tyshenko MG, Flintoff WF, et al. A single point mutation in Drosophila dihydrofolate reductase confers methotrexate resistance to a transgenic CHO cell line. Genome. 2003;46:707–15. doi:10.1139/g03-046.

    Article  CAS  PubMed  Google Scholar 

  • Schimke RT. Methotrexate resistance and gene amplification. Mechanisms and implications. Cancer. 1986;57:1912–7. doi:10.1002/1097-0142(19860515) 57:10<1912::AID-CNCR2820571004>3.0.CO;2-O.

    Article  CAS  PubMed  Google Scholar 

  • Shimizu N, Shingaki K, Kaneko-Sasaguri Y, Hashizume T, Kanda T. When, where and how the bridge breaks: anaphase bridge breakage plays a crucial role in gene amplification and HSR generation. Exp Cell Res. 2005;302:233–43. doi:10.1016/j.yexcr.2004.09.001.

    Article  CAS  PubMed  Google Scholar 

  • Shotkoski FA, Fallon AM. An amplified insect dihydrofolate reductase gene contains a single intron. Eur J Biochem. 1991;201:157–60. doi:10.1111/j.1432-1033.1991.tb16268.x.

    Article  CAS  PubMed  Google Scholar 

  • Silber J, Coste A, Bazin C, Le Menn A. Dihydrofolate reductase activity and resistance to aminopterin in various species of Drosophila. Mol Gen Genet. 1985;200:92–5. doi:10.1007/BF00383318.

    Article  CAS  PubMed  Google Scholar 

  • Singer MJ, Mesner LD, Friedman CL, Trask BJ, Hamlin JL. Amplification of the human dihydrofolate reductase gene via double minutes is initiated by chromosome breaks. Proc Natl Acad Sci U S A. 2000;97:7921–6. doi:10.1073/pnas.130194897.

    Article  CAS  PubMed  Google Scholar 

  • Skacel N, Menon LG, Mishra PJ, Peters R, Banerjee D, Bertino JR, et al. Identification of amino acids required for the functional up-regulation of human dihydrofolate reductase protein in response to antifolate treatment. J Biol Chem. 2005;280:22721–31. doi:10.1074/jbc.M500277200.

    Article  CAS  PubMed  Google Scholar 

  • Takemura Y, Kobayashi H, Miyachi H. Antifolate resistance and its circumvention by new antifolates. Hum Cell. 2001;14:185–202.

    CAS  PubMed  Google Scholar 

  • Tanaka H, Tapscott SJ, Trask BJ, Yao MC. Short inverted repeats initiate gene amplification through the formation of a large DNA palindrome in mammalian cells. Proc Natl Acad Sci U S A. 2002;99:8772–7.

    CAS  PubMed  Google Scholar 

  • Tanaka H, Cao Y, Bergstrom DA, Kooperberg C, Tapscott SJ, Yao MC. Intrastrand annealing leads to the formation of a large DNA palindrome and determines the boundaries of genomic amplification in human cancer. Mol Cell Biol. 2007;27:1993–2002. doi:10.1128/MCB.01313-06.

    Article  CAS  PubMed  Google Scholar 

  • Thaithong S, Ranford-Cartwright LC, Siripoon N, Harnyuttanakorn P, Kanchanakhan NS, Seugorn A, et al. Plasmodium falciparum: gene mutations and amplification of dihydrofolate reductase genes in parasites grown in vitro in presence of pyrimethamine. Exp Parasitol. 2001;98:59–70. doi:10.1006/expr.2001.4618.

    Article  CAS  PubMed  Google Scholar 

  • Underhill TM, Flintoff WF. Complementation of a methotrexate uptake defect in Chinese hamster ovary cells by DNA-mediated gene transfer. Mol Cell Biol. 1989;9:1754–8.

    CAS  PubMed  Google Scholar 

  • Urich K. Comparative animal biochemistry. Berlin: Springer; 1994.

    Google Scholar 

  • Wang Y, Zhao R, Goldman ID. Decreased expression of the reduced folate carrier and folypolyglutamate synthetase is the basis for acquired resistance to the pemetrexed antifolate (LY231514) in an L1210 murine leukemia cell line. Biochem Pharmacol. 2003;65:1163–70. doi:10.1016/S0006-2952(03) 00007-8.

    Article  CAS  PubMed  Google Scholar 

  • Warlick CA, Sweeney CL, McIvor RS. Maintenance of differential methotrexate toxicity between cells expressing drug-resistant and wild-type dihydrofolate reductase activities in the presence of nucleosides through nucleoside transport inhibition. Biochem Pharmacol. 2000;59:141–51. doi:10.1016/S0006-2952(99) 00311-1.

    Article  CAS  PubMed  Google Scholar 

  • Zhao R, Goldman ID. Resistance to antifolates. Oncogene. 2003;22:7431–57. doi:10.1038/sj.onc.1206946.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Natural Sciences and Engineering Research Council of Canada (NSERC) is acknowledged for scholarship support to J.G.A. and grant support to V.K.W. We acknowledge Dr. W. Flintoff for the CHONULL cell line, the Protein Discovery and Function group for the flow cytometer, and Dr. S. Cole for cell culture facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia K. Walker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Affleck, J.G., Nowickyj, S.M. & Walker, V.K. Selection for methotrexate resistance in mammalian cells bearing a Drosophila dihydrofolate reductase transgene. Cell Biol Toxicol 26, 117–126 (2010). https://doi.org/10.1007/s10565-009-9122-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-009-9122-1

Keywords

Navigation