Advertisement

Cell Biology and Toxicology

, Volume 25, Issue 5, pp 471–478 | Cite as

Absence of direct effect of low-power millimeter-wave radiation at 60.4 GHz on endoplasmic reticulum stress

  • Christophe Nicolas Nicolaz
  • Maxim Zhadobov
  • Fabienne Desmots
  • Ronan Sauleau
  • Daniel Thouroude
  • Denis Michel
  • Yves Le Drean
Article

Abstract

Millimeter waves (MMW) at frequencies around 60 GHz will be used in the very near future in the emerging local wireless communication systems and the potential health hazards of artificially induced environmental exposures represent a major public concern. The main aim of this study was to investigate the potential effects of low-power MMW radiations on cellular physiology. To this end, the human glial cell line, U-251 MG, was exposed to 60.4 GHz radiation at a power density of 0.14 mW/cm2 and potential effect of MMW radiations on endoplasmic reticulum (ER) stress was investigated. ER is very sensitive to environmental insults and its homeostasis is altered in various pathologies. Through several assay systems, we found that exposure to 60.4 GHz does not modify ER protein folding and secretion, nor induces XBP1 or ATF6 transcription factors maturation. Moreover, expression of ER-stress sensor, BiP/GRP78 was examined by real-time PCR, in exposed or non-exposed cells to MMW radiations. Our data demonstrated the absence of significant changes in mRNA levels for BiP/GRP78. Our results showed that ER homeostasis does not undergo any modification at molecular level after exposure to low-power MMW radiation at 60.4 GHz. This report is the first study of ER-stress induction by MMW radiations.

Keywords

60 GHz BiP/GRP78 Biological effects Cellular stress Non-ionizing radiation 

Abbreviations

ATF6

activating transcription factor 6

BiP

immunoglobulin heavy-chain binding protein, also known as GRP78: 78 kDa glucose-regulated protein

EMF

electromagnetic field

ER

endoplasmic reticulum

IEEE

Institute of Electrical and Electronics Engineers

IRE1

inositol-requiring enzyme 1

MMW

millimeter wave

SEAP

secreted alkaline phosphatase

PCR

polymerase chain reaction

UPR

unfolded protein response

WLAN

wireless local area network

XBP1

X-box binding protein 1

Notes

Acknowledgements

This research was supported by the French “Agence Nationale de la Recherche” ANR 2006 under project “HIMWR” and the Health and Radiofrequencies Foundation (Fondation Santé et Radiofréquences, France) under project “StressOM”, CNN was supported by fellowship from the French ministry of higher education and research (MENRT), and FD by fellowship from the “Association pour la Recherche sur le Cancer” (ARC).

References

  1. Beneduci A, Chidichimo G, Tripepi S, Perrotta E. Transmission electron microscopy study of the effects produced by wide-band low-power millimeter waves on MCF-7 human breast cancer cells in culture. Anticancer Res 2005;25:1009–13.PubMedGoogle Scholar
  2. Beneduci A, Chidichimo G, Tripepi S, Perrotta E, Cufone F. Antiproliferative effect of millimeter radiation on human erythromyeloid leukemia cell line K562 in culture: ultrastructural- and metabolic-induced changes. Bioelectrochemistry 2007;7:214–20. doi: 10.1016/j.bioelechem.2006.07.008.CrossRefGoogle Scholar
  3. Dawe AS, Nylund R, Leszczynski D, Kuster N, Reader T, De Pomerai DI. Continuous wave and simulated GSM exposure at 1.8 W/kg and 1.8 GHz do not induce hsp16-1 heat-shock gene expression in Caenorhabditis elegans. Bioelectromagnetics 2007;2:92–9.Google Scholar
  4. de Pomerai DI, Smith B, Dawe A, North K, Smith T, Archer DB, et al. Microwave radiation can alter protein conformation without bulk heating. FEBS Lett 2003;543:93–7. doi: 10.1016/S0014-5793(03)00413-7.PubMedCrossRefGoogle Scholar
  5. French PW, Penny R, Laurence JA, McKenzie DR. Mobile phones, heat shock proteins and cancer. Differentiation 2001;67:93–7. doi: 10.1046/j.1432-0436.2001.670401.x.PubMedCrossRefGoogle Scholar
  6. Hiramatsu N, Kasai A, Hayakawa K, Yao J, Kitamura M. Real-time detection and continuous monitoring of ER stress in vitro and in vivo by ES-TRAP: evidence for systemic, transient ER stress during endotoxemia. Nucleic Acids Res 2006;34:e93. doi: 10.1093/nar/gkl515.PubMedCrossRefGoogle Scholar
  7. Hirota M, Kitagaki M, Itagaki H, Aiba S. Quantitative measurement of spliced XBP1 mRNA as an indicator of endoplasmic reticulum stress. J Toxicol Sci 2006;31:149–56. doi: 10.2131/jts.31.149.PubMedCrossRefGoogle Scholar
  8. Kozutsumi Y, Segal M, Normington K, Gething MJ, Sambrook J. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 1988;332:462–4. doi: 10.1038/332462a0.PubMedCrossRefGoogle Scholar
  9. Lee AS. The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods 2005;35:373–81. doi: 10.1016/j.ymeth.2004.10.010.PubMedCrossRefGoogle Scholar
  10. Liebe HJ, Rosenkranz PW, Hufford GA. Atmospheric 60-GHz oxygen spectrum: new laboratory measurements and line parameters. J Quant Spectrosc Radiat Transf 1992;48:629–43. doi: 10.1016/0022-4073(92)90127-P.CrossRefGoogle Scholar
  11. Logani MK, Szabo I, Makar V, Bhanushali A, Alekseev S, Ziskin MC. Effect of millimeter wave irradiation on tumor metastasis. Bioelectromagnetics 2006;27:258–64. doi: 10.1002/bem.20208.PubMedCrossRefGoogle Scholar
  12. Loison F, Debure L, Nizard P, le Goff P, Michel D, Le Drean Y. Up-regulation of the clusterin gene after proteotoxic stress: implication of HSF1–HSF2 heterocomplexes. Biochem J 2006;395:223–31. doi: 10.1042/BJ20051190.PubMedCrossRefGoogle Scholar
  13. Makar V, Logani M, Szabo I, Ziskin M. Effect of millimeter waves on cyclophosphamide induced suppression of T cell functions. Bioelectromagnetics 2003;24:356–65. doi: 10.1002/bem.10106.PubMedCrossRefGoogle Scholar
  14. Marcus M, Pattan B. Millimeter wave propagation. IEEE Microw Mag 2005;6:54–63. doi: 10.1109/MMW.2005.1491267.CrossRefGoogle Scholar
  15. McGuire JB, James TJ, Imber CJ, St Peter SD, Friend PJ, Taylor RP. Optimisation of an enzymatic method for beta-galactosidase. Clin Chim Acta 2002;326:123–9. doi: 10.1016/S0009-8981(02)00332-7.PubMedCrossRefGoogle Scholar
  16. Ni M, Lee AS. ER chaperones in mammalian development and human diseases. FEBS Lett 2007;581:3641–51. doi: 10.1016/j.febslet.2007.04.045.PubMedCrossRefGoogle Scholar
  17. Pakhomov AG, Akyel Y, Pakhomova ON, Stuck BE, Murphy MR. Current state and implications of research on biological effects of millimeter waves: a review of the literature. Bioelectromagnetics 1998;19:393–413. doi: 10.1002/(SICI)1521-186X(1998)19:7<393::AID-BEM1>3.0.CO;2-X.PubMedCrossRefGoogle Scholar
  18. Rojavin MA, Ziskin MC. Medical application of millimetre waves. QJM 1998;91:57–66. doi: 10.1093/qjmed/91.1.57.PubMedCrossRefGoogle Scholar
  19. Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 2007;8:519–29. doi: 10.1038/nrm2199.PubMedCrossRefGoogle Scholar
  20. Shang J. Quantitative measurement of events in the mammalian unfolded protein response. Methods 2005;35:390–4. doi: 10.1016/j.ymeth.2004.10.012.PubMedCrossRefGoogle Scholar
  21. Szabo I, Kappelmayer J, Alekseev SI, Ziskin MC. Millimeter wave induced reversible externalization of phosphatidylserine molecules in cells exposed in vitro. Bioelectromagnetics 2006;27:233–44. doi: 10.1002/bem.20202.PubMedCrossRefGoogle Scholar
  22. Takuma K, Baba A, Matsuda T. Astrocyte apoptosis: implications for neuroprotection. Prog Neurobiol 2004;72:111–27. doi: 10.1016/j.pneurobio.2004.02.001.PubMedCrossRefGoogle Scholar
  23. Yoshida H. ER stress and diseases. FEBS J 2007;274:630–58. doi: 10.1111/j.1742-4658.2007.05639.x.PubMedCrossRefGoogle Scholar
  24. Yoshida H, Haze K, Yanagi H, Yura T, Mori K. Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J Biol Chem 1998;273:33741–9. doi: 10.1074/jbc.273.50.33741.PubMedCrossRefGoogle Scholar
  25. Yoshida H, Okada T, Haze K, Yanagi H, Yura T, Negishi M, et al. ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol Cell Biol 2000;20:6755–67. doi: 10.1128/MCB.20.18.6755-6767.2000.PubMedCrossRefGoogle Scholar
  26. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 2001;107:881–91. doi: 10.1016/S0092-8674(01)00611-0.PubMedCrossRefGoogle Scholar
  27. Zhadobov M, Sauleau R, Vie V, Himdi M, Le Coq L, Thouroude D. Interactions between 60 GHz millimeter waves and artificial biological membranes: dependence on radiation parameters. IEEE Trans Microw Theory Tech 2006;54:2534–42. doi: 10.1109/TMTT.2006.875811.CrossRefGoogle Scholar
  28. Zhadobov M, Sauleau R, Le Coq L, Debure L, Thouroude D, Michel D, et al. Low-power millimeter wave radiations do not alter stress-sensitive gene expression of chaperone proteins. Bioelectromagnetics 2007;28:188–96. doi: 10.1002/bem.20285.PubMedCrossRefGoogle Scholar
  29. Zhadobov M, Sauleau R, Le Dréan Y, Alekseev S I, Ziskin M C. Numerical and experimental millimeter-wave dosimetry for in vitro experiments. IEEE Microw Theory Tech. 2008 (in press).Google Scholar
  30. Zhao L, Ackerman SL. Endoplasmic reticulum stress in health and disease. Curr Opin Cell Biol 2006;18:444–52. doi: 10.1016/j.ceb.2006.06.005.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Christophe Nicolas Nicolaz
    • 1
    • 2
  • Maxim Zhadobov
    • 2
    • 4
  • Fabienne Desmots
    • 1
  • Ronan Sauleau
    • 2
  • Daniel Thouroude
    • 2
  • Denis Michel
    • 1
  • Yves Le Drean
    • 1
    • 3
  1. 1.Intracellular Protein Homeostasis, IFR 140, UMR CNRS 6026University of Rennes 1RennesFrance
  2. 2.Institute of Electronics and Telecommunications of Rennes, UMR CNRS 6164University of Rennes 1RennesFrance
  3. 3.Équipe “Homéostasie intracellulaire des protéines” (Hip), UMR CNRS 6026Université de Rennes 1Rennes CedexFrance
  4. 4.Center for Biomedical PhysicsTemple University Medical SchoolPhiladelphiaUSA

Personalised recommendations