Skip to main content
Log in

Toxicity of landfill leachate to sea urchin development with a focus on ammonia

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Sea urchin gametes and embryos serve as a model system to evaluate toxicity in the marine environment. In this study, the toxicity of complex chemical mixtures in leachate samples to sea urchin development was examined with a focus on ammonia, which was the main contaminant of concern in most samples. Two rapid tests, the submitochondrial particle function and bacterial luminescence tests, were also used. Ammonia is highly toxic to sea urchin embryos with an EC50 of 1.3 mg l−1 for the embryos of the Australian sea urchin Heliocidaris tuberculata. Leachate ammonia levels were well above these EC50 concentrations. To assess the contribution of ammonia to leachate toxicity in sea urchin development, we compared the predicted toxic units (PTU) and observed toxic units (OTU) for ammonia for each sample. The PTU/OTU comparison revealed that the sensitivity of the sea urchin embryos to ammonia were altered (enhanced or decreased) by other chemicals in the leachates. This result emphasises the need for parallel chemical analyses and a suite bioassays for evaluating the toxicity of complex and variable chemical mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

NAD:

nicotinamide adenine dinucleotide

OTU:

observed toxic units

PTU:

predicted toxic units

RET:

reverse electron transport

SDT:

sea urchin development test

SFT:

sea urchin fertilisation test

SMPT:

submitochondrial particle test

References

  • Argese E, Bettiol C, Volpi Ghirardini A, Fasolo M, Guirin G, Ghetti PF. 1998 Comparison of in vitro submitochondrial particle and Microtox® assays for determining the toxicity of organotin compounds. Environ Toxicol Chem 1998;17:1005–12. doi:10.1897/1551-5028(1998)017<1005:COIVSP>2.3.CO;2.

    Article  CAS  Google Scholar 

  • Arizzi Novelli A, Picone M, Losso C, Volpi Ghirardini A. Ammonia as confounding factor in toxicity tests with the sea urchin Paracentrotus lividus (Lmk). Toxicol Environ Chem 2003;85:183–91.

    Article  CAS  Google Scholar 

  • Binet MT, Adams MA, Stauber JL, King CK, Doyle CJ, Lim RP, et al. Toxicity assessment of leachates from Homebush Bay landfills. Aust J Ecotoxicol 2003;9:7–18.

    CAS  Google Scholar 

  • Blondin GA, Knobeloch LM, Read HW, Harkin JM. Mammalian mitochondria as in vitro monitors of water quality. Bull Environ Contam Toxicol 1987;38:467–74. doi:10.1007/BF01606616.

    Article  PubMed  CAS  Google Scholar 

  • Burton SAQ, Watson-Craik IA. Ammonia and nitrogen fluxes in landfill sites: applicability to sustainable landfilling. Water Manage Res 1998;16:41–53.

    CAS  Google Scholar 

  • Byrne M, Pollak J, Oakes D, Laginestra E. Comparison of the submitochondrial particle test, Microtox® and sea urchin fertilization and development tests: parallel assays with leachates. Aust J Ecotoxicol 2003;9:19–28.

    CAS  Google Scholar 

  • Carr RS, Biedenbach JM, Nipper M. Influence of potentially confounding factors on sea urchin porewater toxicity tests. Arch Environ Contam Toxicol 2006;51:573–9. doi:10.1007/s00244-006-0009-3.

    Article  PubMed  CAS  Google Scholar 

  • Clément B, Merlin G. The contribution of ammonia and alkalinity to landfill leachate toxicity to duckweed. Sci Total Environ 1995;170:71–9. doi:10.1016/0048-9697(95)04563-G.

    Article  Google Scholar 

  • Dinnel PA, Link JM, Stober QJ. Improved methodology for a sea urchin sperm cell bioassay for marine waters. Arch Environ Contam Toxicol 1987;16:23–32. doi:10.1007/BF01055356.

    Article  PubMed  CAS  Google Scholar 

  • Doyle CJ, Pablo F, Lim RP, Hyne RV. Assessment of metal toxicity in sediment pore-water from Lake Macquarie, Australia. Arch Environ Contam Toxicol 2003;44:343–50. doi:10.1007/s00244-002-2003-8.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez N, Beiras R. Combined toxicity of dissolved mercury with copper, lead and cadmium on embryogenesis and early larval growth of the Paracentrotus lividus sea-urchin. Ecotoxicology 2001;10:263–71. doi:10.1023/A:1016703116830.

    Article  PubMed  CAS  Google Scholar 

  • IPCC. Climate Change 2007: The fourth assessment report of the intergovernmental panel on climate change (IPCC). Cambridge University Press, Cambridge UK; 2007.

    Google Scholar 

  • Irene M, Lo C. Characteristics and treatment of leachates from domestic landfills. Environ Int 1996;22:433–42.

    Google Scholar 

  • Laginestra E. Developing long term monitoring plans for the Homebush Bay Olympic site. Aust J Ecotoxicol 2003;9:1–6.

    Google Scholar 

  • Losso C, Arizzi Novelli A, Picone M, Marchetto D, Pantani C, Ghetti PF, et al. Potential role of sulfide and ammonia as confounding factors in elutriate toxicity bioassays with early life stages of sea urchins and bivalves. Ecotoxicol Environ Saf 2007;66:252–7. doi:10.1016/j.ecoenv.2005.12.008.

    Article  PubMed  CAS  Google Scholar 

  • Marin A, Montoya S, Vita R, Marín-Guirao L, Lloret J, Aguado F. Utility of sea urchin embryo-larval bioassays for assessing the environmental impact of marine fishcage farming. Aquaculture 2007;271:286–97. doi:10.1016/j.aquaculture.2007.05.030.

    Article  CAS  Google Scholar 

  • McCready S, Spyrakis G, Creely CR, Birch GF, Long ER. Toxicity of surficial sediments from Sydney harbour and vicinity, Australia. Environ Monit Assess 2004;96:53–83. doi:10.1023/B:EMAS.0000031716.34645.71.

    Article  PubMed  CAS  Google Scholar 

  • Oakes DJ, Pollak JK. Effects of a herbicide formulation, Tordon 75D, and its individual components on the oxidative functions of mitochondria. Toxicol 1999;136:41–52. doi:10.1016/S0300-483X(99)00055-4.

    Article  CAS  Google Scholar 

  • Oakes D, Pollak JK. The in vitro evaluation of the toxicities of three related herbicide formulations containing ester derivatives of 2,4,5-T and 2,4-D using sub-mitochondrial particles. Toxicology 2000;151:1–9. doi:10.1016/S0300-483X(00)00244-4.

    Article  PubMed  CAS  Google Scholar 

  • Qureshi AA, Bulich AA, Isenberg DL. MicrotoxÒ Toxicity Test Systems—where they stand today. In: Wells PG, Lee K, Blaise C, editors. Microscale testing in aquatic toxicology—advances, techniques and practice. Boca Raton: CRC; 1998. p. 185–99.

    Google Scholar 

  • Simmons JE, Berman E. Toxicity of complex waste mixtures: a comparison of observed and predicted lethality. J Toxicol Environ Health 1989;27:275–86.

    Article  PubMed  CAS  Google Scholar 

  • Soualili D, Dubois P, Gosselin P, Pernet P, Guillou M. Assessment of seawater pollution by heavy metals in the neighbourhood of Algiers: use of the sea urchin, Paracentrotus lividus, as a bioindicator. ICES J Mar Sci 2007;65:132–9. doi:10.1093/icesjms/fsm183.

    Article  Google Scholar 

  • Sprague JB. Measurement of pollutant toxicity to fish. II. Utilizing and applying bioassay results. Water Res 1970;4:3–32. doi:10.1016/0043-1354(70)90018-7.

    Article  CAS  Google Scholar 

  • Stauber JL, Adams MS, Binet MT, King CK, Lim RP, Doyle CJ, et al. Toxicity assessment of leachates from Homebush bay landfills. Report No. ET/IR341R CSIRO Centre for Advanced Analytical Chemistry Energy Technology. 2000.

  • Suh JY, Birch GF, Hughes K. Hydrochemistry in reclaimed lands of the 2000 Olympic games site, Sydney, Australia. J Coast Res 2004;20:709–21. doi:10.2112/1551-5036(2004)20[709:HIRLOT]2.0.CO;2.

    Article  Google Scholar 

  • Weber CI, Horning WB, Klemm DJ, Neiheisel TW, Lewis PA, Robinson EL. Sea urchin (Arbacia punctulata) fertilisation test method 1008. In. Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Marine and Estuarine Organisms. U.S. EPA, Environmental Monitoring and Support Laboratory, Cincinnati, Ohio; 1988. pp. 239–272.

  • Weideborg M, Vik EA, Oford GD, Kjonno O. Comparison of three marine screening tests and four Oslo and Paris Commission procedures to evaluate toxicity of offshore chemicals. Environ Toxicol Chem 1997;16:384–9. doi:10.1897/1551-5028(1997)016<0384:COTMST>2.3.CO;2.

    Article  Google Scholar 

  • Woodworth JG, King CK, Miskiewicz AG, Laginestra E, Simon J. Assessment of the comparative toxicity of sewage effluent from 10 sewage treatment plants in the area of Sydney, Australia using an amphipod and two sea urchin bioassays. Mar Pollut Bull 1999;39:174–8. doi:10.1016/S0025-326X(99)00096-X.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by the Olympic Co-ordination Authority and assisted by F. Mazzone, G. Spirakis, P. Selvakumaraswamy, P. Cisternas, N. Soars and J. Simon. Thanks to C. King and G. Birch for advice. Sydney Aquarium provided facilities to maintain urchins. The reviewers are thanked for helpful comments that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Byrne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byrne, M., Oakes, D.J., Pollak, J.K. et al. Toxicity of landfill leachate to sea urchin development with a focus on ammonia. Cell Biol Toxicol 24, 503–512 (2008). https://doi.org/10.1007/s10565-008-9099-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-008-9099-1

Keywords

Navigation