Skip to main content
Log in

Cell cycle arrest induced by Pisosterol in HL60 cells with gene amplification

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

The leukemia cell line HL60 is widely used in studies of the cell cycle, apoptosis, and adhesion mechanisms in cancer cells. We conducted a focused cytogenetic study in an HL60 cell line, by analyzing GTG-banded chromosomes before and after treatment with pisosterol (at 0.5, 1.0, and 1.8 μg/ml), a triterpene isolated from Pisolithus tinctorius, a fungus collected in the Northeast of Brazil. Before treatment, 99% of the cells showed the homogeneously staining region (HSR) 8q24 aberration. After treatment with 1.8 μg/ml pisosterol, 90% of the analyzed cells lacked this aberration. We further performed a pulse test, in which the cells treated with pisosterol (0.5, 1.0, and 1.8 μg/ml) were washed and re-incubated in the absence of pisosterol. Only 30% of the analyzed cells lacked the HSR 8q24 aberration, suggesting that pisosterol probably blocks the cells with HSRs at interphase. No effects were detected at lower concentrations. At the highest concentration examined (1.8 μg/ml), pisosterol also inhibited cell growth, but this effect was not observed in the pulse test, reinforcing our hypothesis that, at the concentrations tested, pisosterol probably does not induce cell death in the HL60 line. The results found for pisosterol were compared with those for doxorubicin. Cells that do not show a high degree of gene amplification (HSRs and double-minute chromosomes) have a less aggressive and invasive behavior and are easy targets for chemotherapy. Therefore, further studies are needed to examine the use of pisosterol in combination with conventional anti-cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ABR:

abnormally banded region

HSR:

homogeneously staining region

DMs:

double-minute chromosomes

CGH:

comparative genomic hybridization

MI:

mitotic index

ISCN:

International System for Human Cytogenetic Nomenclature

IC50 :

half inhibitory concentration

References

  • Benner SE, Wahl GM, Von Hoff DD. Double minute chromosomes and homogeneously staining regions in tumors taken directly from patients versus in human tumor cell lines. Anticancer Drugs. 1991;2:11–25.

    Article  PubMed  CAS  Google Scholar 

  • Birnie GD. The HL60 cell line: a model system for studying human myeloid cell differentiation. Br J Cancer Suppl. 1988;9:41–5.

    PubMed  CAS  Google Scholar 

  • Burbano RR, Assumpção PP, Leal MF, Calcagno DQ, Guimarães AC, Khayat AS, et al. C-MYC locus amplification as metastasis predictor in intestinal-type gastric adenocarcinomas: CGH study in Brazil. Anticancer Res. 2006;26:2909–14.

    PubMed  CAS  Google Scholar 

  • Calcagno DQ, Leal MF, Taken SS, Assumpcao PP, Demachki S, Smith MA, et al. Aneuploidy of chromosome 8 and C-MYC amplification in individuals from northern Brazil with gastric adenocarcinoma. Anticancer Res. 2005;25:4069–74.

    PubMed  CAS  Google Scholar 

  • Calcagno DQ, Leal MF, Seabra AD, Khayat AS, Chen ES, Demachki S, et al. Interrelationship between chromosome 8 aneuploidy, C-MYC amplification and increased expression in individuals from northern Brazil with gastric adenocarcinoma. World J Gastroenterol. 2006;12:6207–11.

    PubMed  CAS  Google Scholar 

  • Carroll SM, DeRose ML, Gaudray P, Moore CM, Needham-VanDevanter DR, Von Hoff DD, et al. Double minute chromosomes can be produced from precursors derived from a chromosomal deletion. Mol Cell Biol. 1988;8:1525–33.

    PubMed  CAS  Google Scholar 

  • Collins SJ. The HL-60 promyelocytic leukemia cell line: Proliferation, differentiation, and cellular oncogene expression. Blood. 1987;70:1233–44.

    PubMed  CAS  Google Scholar 

  • Cottier M, Tchirkov A, Perissel B, Giollant M, Campos L, Vago P. Cytogenetic characterization of seven human cancer cell lines by combining G- and R-banding, -FISH, CGH and chromosome- and locus-specific FISH. Int J Mol Med. 2004;14(4):483–95.

    PubMed  CAS  Google Scholar 

  • Dang CV. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol. 1999;19:1–11.

    PubMed  CAS  Google Scholar 

  • Dhawan MA, Kayani JM, Parry E, Anderson P. Aneugenic and clastogenic effects of doxorubicin in human lymphocytes. Mutagenesis. 2003;18:487–90.

    Article  PubMed  CAS  Google Scholar 

  • Eckhardt SG, Dai A, Davidson KK, Forseth BJ, Wahl GM, Von Hoff DD. Induction of differentiation in HL60 cells by the reduction of extrachromosomally amplified c-myc. Proc Natl Acad Sci U S A. 1994;91:6674–8.

    Article  PubMed  CAS  Google Scholar 

  • Escot C, Theillet C, Lidereau R, Spyratos F, Champeme MH, Gest J, et al. Genetic alteration of the c-myc protooncogene (MYC) in human primary breast carcinomas. Proc Natl Acad Sci U S A. 1986;83:4834–8.

    Article  Google Scholar 

  • Fegan CD, White D, Sweeney M. C-myc amplification, double minutes and homogenous staining regions in a case of AML. Br J Haematol. 1995;90:486–8.

    CAS  Google Scholar 

  • Feo S, Di Liegro C, Mangano R, Read M, Fried M. The amplicons in HL60 cells contain novel cellular sequences linked to MYC locus DNA. Oncogene. 1996;13:1521–9.

    PubMed  CAS  Google Scholar 

  • Fischkoff SA, Pollak A, Gleich GJ, Testa JR, Misawa S, Reber TJ. Eosinophilic differentiation of the human promyelocytic leukemia cell line, HL-60. J Exp Med. 1984;160:179–96.

    Article  PubMed  CAS  Google Scholar 

  • Gallagher R, Collins S, Trujillo J, McCredie K, Ahearn M, Tsai S, et al. Characterization of the continuous, differentiating myeloid cell line (HL-60) from a patient with acute promyelocytic leukemia. Blood. 1979;54:713–33.

    PubMed  CAS  Google Scholar 

  • Leglise MC, Dent GA, Ayscue LH, Ross DW. Leukemic cell maturation: phenotypic variability and oncogene expression in HL60 cells: a review. Blood Cells. 1988;13:319–37.

    PubMed  CAS  Google Scholar 

  • Lima PD, Leite DS, Vasconcellos MC, Cavalcanti BC, Santos RA, Costa-Lotufo LV, Pessoa C, Moraes MO, Burbano RR. Genotoxic effects of aluminum chloride in cultured human lymphocytes treated in different phases of cell cycle. Food Chem Toxicol. 2007a;45:1154–9.

    Article  PubMed  CAS  Google Scholar 

  • Lima PD, Vasconcellos MC, Bahia MO, Montenegro RC, Pessoa CO, Costa-Lotufo LV, Moraes MO, Burbano RR. Genotoxic and cytotoxic effects of manganese chloride in cultured human lymphocytes treated in different phases of cell cycle. Toxicol In Vitro. 2007b;22:1032–7.

    Google Scholar 

  • Lima PD, Vasconcellos MC, Montenegro RA, Sombra CM, Bahia MO, Costa-Lotufo LV, Pessoa CO, Moraes MO, Burbano RR. Genotoxic and cytotoxic effects of iron sulfate in cultured human lymphocytes treated in different phases of cell cycle. Toxicol In Vitro. 2008;22:723–9.

    Google Scholar 

  • Little CD, Nau MM, Carney DN, Gazdar AF, Minna JD. Amplification and expression of the c-myc oncogene in human lung cancer cell lines. Nature. 1983;306:194–6.

    Article  PubMed  CAS  Google Scholar 

  • Misawa S, Staal SP, Testa JR. Amplification of the c-myc oncogene is associated with an abnormally banded region on chromosome 8 or double minute chromosomes in two HL-60 human leukemia sublines. Cancer Genet Cytogenet. 1987;28(1):127–35.

    Article  PubMed  CAS  Google Scholar 

  • Mitelman F, editor. ISCN. Guidelines for Cancer Cytogenetics. Supplement to: An International System for Human Cytogenetic Nomenclature. Switzerland: Karger; 1995.

  • Montenegro RC, Jimenez PC, Feio Farias RA, Andrade-Neto M, Silva Bezerra F, Moraes ME, et al. Cytotoxic activity of pisosterol, a triterpene isolated from Pisolithus tinctorius (Mich.: Pers.) Coker & Couch, 1928. Z Naturforsch [C]. 2004;59:519–22.

    CAS  Google Scholar 

  • Montenegro RC, Vasconcellos MC, Bezerra FS, Andrade-Neto M, Pessoa C, Moraes MO, et al. Pisosterol induces monocytic differentiation in HL-60 cells. Toxicol in vitro. 2007;21:795–800.

    Article  PubMed  CAS  Google Scholar 

  • Nowell P, Finan J, Dalla-Favera R, Gallo RC, ar-Rushdi A, Romanczuk H, et al. Association of amplified oncogene c-myc with an abnormally banded chromosome 8 in a human leukaemia cell line. Nature. 1983;306:494–7.

    Article  PubMed  CAS  Google Scholar 

  • Scheres VMJC. Identification of two Robertsonian translocations with a Giemsa-banding technique. Human Genet. 1972;15:253–6.

    Article  CAS  Google Scholar 

  • Ulger C, Toruner GA, Alkan M, Mohammed M, Damani S, Kang J, et al. Comprehensive genome-wide comparison of DNA and RNA level scan using microarray technology for identification of candidate cancer-related genes in the HL-60 cell line. Cancer Genet Cytogenet. 2003;147:28–35.

    Article  PubMed  CAS  Google Scholar 

  • Volpi EV, Vatcheva R, Labella T, Gan SU. More detailed characterization of some of the HL60 karyotypic features by fluorescence in situ hybridization. Cancer Genet Cytogenet. 1996;87:103–6.

    Article  PubMed  CAS  Google Scholar 

  • Von Hoff DD, Needham-VanDevanter DR, Yucel J, Windle BE, Wahl GM. Amplified human MYC oncogenes localized to replicating submicroscopic circular DNA molecules. Proc Natl Acad Sci U S A. 1988;85:4804–8.

    Article  Google Scholar 

  • Von Hoff DD, Forseth B, Clare CN, Hansen KL, VanDevanter D. Double minutes arise from circular extrachromosomal DNA intermediates which integrate into chromosomal sites in human HL-60 leukemia cells. J Clin Invest. 1990;85:1887–95.

    Article  Google Scholar 

  • Von Hoff DD, McGill JR, Forseth BJ, Davidson KK, Bradley TP, Van Devanter DR, et al. Elimination of extrachromosomally amplified MYC genes from human tumor cells reduces their tumorigenicity. Proc Natl Acad Sci U S A. 1992;89:8165–9.

    Article  Google Scholar 

  • Wang ZR, Liu W, Smith ST, Parrish RS, Young SR. C-myc and chromosome 8 centromere studies of ovarian cancer by interphase FISH. Exp Mol Pathol. 1999;66:140–8.

    Article  PubMed  CAS  Google Scholar 

  • Wessendorf S, Fritz B, Wrobel G, Nessling M, Lampel S, Goettel D, et al. Automated screening for genomic imbalances using matrix-based comparative genomic hybridization. Lab Invest. 2002;82:47–60.

    PubMed  CAS  Google Scholar 

  • Wolman SR, Lanfrancone L, Dalla-Favera R, Ripley S, Henderson AS. Oncogene mobility in a human leukemia line HL-60. Cancer Genet Cyfstogenet. 1985;17(2):133–41.

    Article  CAS  Google Scholar 

  • Yunis JJ. New chromosome techniques in the study of human neoplasia. Human Pathol. 1981;12:540–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) grant No. 409826/2006-5. RRB had a PQ-2 fellowship (number 308256/2006-9) granted by CNPq. We wish to thank CAPES, FUNCAP, FINEP, BNB/FUNDECI, and PRONEX for financial support in the form of grants and fellowship awards. We are grateful to Dr. A. Leyva who provided English editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. R. Burbano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burbano, R.R., Lima, P.D.L., Bahia, M.O. et al. Cell cycle arrest induced by Pisosterol in HL60 cells with gene amplification. Cell Biol Toxicol 25, 245–251 (2009). https://doi.org/10.1007/s10565-008-9074-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-008-9074-x

Keywords

Navigation