Skip to main content

Advertisement

Log in

Evaluation of anticancer effects of newly synthesized dihydropyridine derivatives in comparison to verapamil and doxorubicin on T47D parental and resistant cell lines in vitro

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Failure of current anticancer drugs mandates screening for new compounds of synthetic or biological origin to be used in cancer therapy. Multidrug resistance (MDR) is one of the main obstacles in the chemotherapy of cancer. Efflux of cytotoxic agents mediated by P-glycoprotein (P-gp or MDR1) is believed to be an important mechanism of multidrug resistance. Therefore, we decided to investigate the antiproliferative effects of seven newly synthesized 1,4-dihydropyridine (DHP) derivatives in comparison to verapamil (VP) and doxorubicin (DOX) on human breast cancer T47D cells and its MDR1 overexpressed and moderately resistant cells (RS cells) using MTT cytotoxicity assay. We also examined the effects of these compounds on cytotoxicity of DOX in these two cell types. The cytotoxicity assays using MTT showed that most of the tested new DHP derivatives and VP at 10 μM concentration had varying levels of toxicity on both T47D and RS cells. The toxicity was mostly in the range of 10–25%. However, the cytotoxicity of these DHP derivatives, similar to VP, was significantly less than DOX when comparing IC50 values. Furthermore, these compounds in general had relatively more cytotoxicity on T47D vs RS cells at 10-μM concentration. Among new DHPs, compounds 7a (3,5-dibenzoyl-4-(2-methylthiazol-4-yl)-1,4-dihydro-2,6-dimethylpyridine) and 7d (3,5-diacetyl-4-[2-(2-chlorophenyl)thiazol-4-yl)]-1,4-dihydro-2,6-dimethylpyridine) showed noticeable potentiation of DOX cytotoxicity (reduction of DOX IC50) compared to DOX alone in both cells, particularly in RS cells. This effect was similar to that of VP, a known prototype of MDR1 reversal agent. In other words, compounds 7a and 7d resensitized RS cells to DOX or reversed their resistance. Results indicate that compound 7d exerts highest effect on RS cells. Therefore, these two newly synthesized DHP derivatives, compounds 7a and 7d, are promising as potential new MDR1 reversal agents and should be further studied on other highly resistant cells due to MDR1 overexpression and with further molecular investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Cairo MS, Siegel S, Anas N, Sender L. Clinical trial of continuous infusion verapamil, bolus vinblastine, and continuous infusion VP-16 in drug-resistant pediatric tumors. Cancer Res 1989;49:1063–6.

    PubMed  CAS  Google Scholar 

  • Callies S, de Alwis DP, Wright JG, Sandler A, Burgess M, Aarons L. A population pharmacokinetic model for doxorubicin and doxorubicinol in the presence of a novel MDR modulator, zosuquidar trihydrochloride (LY335979). Cancer Chemother Pharmacol 2003;51:107–18.

    PubMed  CAS  Google Scholar 

  • Clapham DE. Calcium signaling. Cell 1995;80:259–68.

    Article  PubMed  CAS  Google Scholar 

  • Dunkern TR, Wedemeyer I, Baumgartner M, Fritz G, Kaina B. Resistance of p53 knockout cells to doxorubicin is related to reduced formation of DNA strand breaks rather than impaired apoptotic signaling. DNA Repair 2003;2:49–60.

    Article  PubMed  CAS  Google Scholar 

  • Early Breast Cancer Trialists’ Collaborative Group. Systemic treatment of early breast cancer by hormonal, cytotoxic, or immune therapy: 133 randomized trials involving 31,000 recurrences and 24,000 deaths among 75,000 women. Lancet 1992;339:71–84.

    Google Scholar 

  • Gewirtz DA. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 1999;17:1311–8.

    Google Scholar 

  • Giaccone G, Linn SC, Pinedo HM. Multidrug resistance in breast cancer: mechanisms, strategies. Eur J Cancer 1995;31A(7):S15–7.

    Article  PubMed  Google Scholar 

  • Godfraind T, Miller R, Wibo M. Calcium antagonism and calcium entry blockade. Pharmacol Rev 1986;38:321–416.

    PubMed  CAS  Google Scholar 

  • Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med 2002;53:615–27.

    Article  PubMed  CAS  Google Scholar 

  • Hauberman K, Benz B, Gekelen V, Schumacher K, Eichelbaum M. Effects of verapamil enantiomers and major metabolites on the cytotoxicity of vincristine and daunomycin in human lymphoma cell lines. Eur J Clin Pharmacol 1991;40(1):53–9.

    Article  Google Scholar 

  • Hofmann J, Gekeler V, Ise W, Noller A, Miterdorfer J, Hofer S, et al. Mechanism of action of dexniguldipine-HCl (B8509-035), a new potent modulator of multidrug resistance. Biochem Pharm 1994;49:603–9.

    Article  Google Scholar 

  • Jensen RL, Wurster RD. Calcium channel antagonists inhibit growth of subcutaneous xenograft meningiomas in nude mice. Surg Neurol 2001;55:275–83.

    Article  PubMed  CAS  Google Scholar 

  • Jensen RL, Origitano TC, Lee YS, Weber M, Wurster RD. In vitro growth inhibition of growth factor-stimulated meningioma cells by calcium channel antagonists. Neurosurgery 1995;36:365–73.

    Article  PubMed  CAS  Google Scholar 

  • Jensen RL, Petr M, Wurster RD. Calcium channel antagonist effect on in vitro meningioma signal transduction pathways after growth factor stimulation. Neurosurgery 2000;46:692–702.

    Article  PubMed  CAS  Google Scholar 

  • Kawase M, Shah A, Gaveriya H, Motohashi N, Sakagami H, Varga A, et al. 3,5-Dibenzoyl-1,4-dihydropyridines: synthesis and MDR reversal in tumor cells. Bioorg Med Chem 2002;10:1051–5.

    Article  PubMed  CAS  Google Scholar 

  • Kiue A, Sano T, Suzuki K, Inada H, Okumura M, Kikuchi J, et al. Activities of newly synthesized dihydropyridines in overcoming of vincristine resistance, calcium antagonism, and inhibition of photoaffinity labeling of P-glycoprotein in rodents. Cancer Res 1990;50(2):310–7.

    PubMed  CAS  Google Scholar 

  • Larsen AK, Skladanowski A. Cellular resistance to topoisomerase-targeted drugs from drug uptake to cell death. Biochim Biophys Acta 1998;1400:257–74.

    PubMed  CAS  Google Scholar 

  • Lee YS, Sayeed MM, Wurster RD. Inhibition of cell growth and intracellular Ca2+ mobilization in human brain tumor cells by Ca2+ channel antagonists. Mol Chem Neuropathol 1994;22:81–95.

    Article  PubMed  CAS  Google Scholar 

  • Lhotak P, Kurfurst A. Preparation of new organic luminophores based on 3,5-Diacetylpyridines. Czech Chem Commun 1992;57:1937–46.

    Article  CAS  Google Scholar 

  • Marche P, Stepien O. Calcium antagonists and vascular smooth muscle cell reactivity. Z Kardiol 2000;89(2):140–4.

    Article  PubMed  CAS  Google Scholar 

  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55–63.

    Article  PubMed  CAS  Google Scholar 

  • Motahari Z, Etebary M, Azizi E. Studying the role of P-glycoprotein in resistance to tamoxifen in human breast cancer T47D cells by immunocytochemistry. Int J Pharmacol 2005;1(2):112–7.

    Article  CAS  Google Scholar 

  • Nagae I, Kohno K, Kikuci J, Kuwano M, Akiyama S, Kiue A, et al. Analysis of structural features of dihydropyridine analogs needed to reverse multidrug resistance and to inhibit photolabeling of P-glycoprotein. Biochem Pharmacol 1989;38:519–27.

    Article  Google Scholar 

  • Pastan I, Gottesman MM. Multiple-drug resistance in human cancer. N Engl J Med 1987;316:1388–93.

    Article  PubMed  CAS  Google Scholar 

  • Pommerenke EW, Mattern J, Traugott U, Volm M. Reversal of multidrug resistance with (R)-verapamil in vitro and in vivo. Arzneimittel-Forschung 1991;41(8):855–8.

    PubMed  CAS  Google Scholar 

  • Putney JW, Bird GS. The inositol phosphate-calcium signaling system in nonexcitable cells. Endocr Rev 1993;14:610–31.

    Article  PubMed  CAS  Google Scholar 

  • Putney JW, Broad LM, Braun FJ, Lievremont JP, Bird GS. Mechanisms of capacitative calcium entry. J Cell Sci 2001;114:2223–29.

    PubMed  CAS  Google Scholar 

  • Riordan JR, Ling V. Genetic and biochemical characterization of multidrug resistance. Pharmacol Ther 1985;28:51–75.

    Article  PubMed  CAS  Google Scholar 

  • Rybalchenko V, Prevarskaya N, Van Coppenolle F, Legrand G, Lemonnier L, Le Bourhis X, et al. Verapamil inhibits proliferation of LNCaP human prostate cancer cells influencing K+ channel gating. Mol Pharmacol 2001;59:1376–87.

    PubMed  CAS  Google Scholar 

  • Saponara S, Kawase M, Shah A, Motohashi N, Molnar J. 3,5-Dibenzoyl-4-(3-phenoxyphenyl)-1,4-dihydro-2,6-dimethylpyridine (DP7) as a new multidrug resistance reverting agent devoid of effects on vascular smooth muscle contractility. Br J Pharmacol 2004;141:415–22.

    Article  PubMed  CAS  Google Scholar 

  • Sato W, Fukazawa N, Suzuki T, Yusa K, Tsuruo T. Circumvention of multidrug resistance by a newly synthesized quinoline derivative, MS-073. Cancer Res 1991;51:2420–24.

    PubMed  CAS  Google Scholar 

  • Schachter M. Vascular smooth muscle cell migration, atherosclerosis, and calcium channel blockers. Int J Cardiol 1997;62(2):S85–90.

    Article  PubMed  Google Scholar 

  • Shah A, Gaveriya H, Motohashi N, Kawase M, Saito S, Sakagami H, Satoh K, Tada Y, Solymosi A, Walfard K, Molnar J. 3,5-Diacetyl-1,4-dihydropyridines: synthesis and MDR reversal in tumor cells. Anticancer Res 2000;20:373–8.

    PubMed  CAS  Google Scholar 

  • Shinoda H, Inaba M, Tsuruo T. In vivo circumvention of vincristine resistance in mice with P388 leukemia using a novel compound, AHC-52. Cancer Res 1989;49:1772–6.

    Google Scholar 

  • Shinoda H, Ebisu H, Mitsuhashi J, Inaba M, Tsuruo T. Therapeutic efficacy of combination of antitumor agent with AHC-52 against multidrug-resistant cells in the intravenously inoculated P388 leukemia model. Cancer Chemother Pharmacol 1992;30:335–40.

    Article  PubMed  CAS  Google Scholar 

  • Skovsgaard T. Mechanism of cross-resistance between vincristine and daunorubicin in Ehrlich ascites tumor cells. Cancer Res 1978;38:4722–7.

    PubMed  CAS  Google Scholar 

  • Son YS, Suh JM, Ahn SH, Kim JC, Yi JY, Hur KC, et al. Reduced activity of topoisomerase II in an Adriamycin-resistant human stomach – adenocarcinoma cell line. Cancer Chemother Pharmacol 1998;41:353–60.

    Article  PubMed  CAS  Google Scholar 

  • Stepien O, Marche P. Amlodipine inhibits thapsigargin-sensitive Ca2+ stores in thrombin-stimulated vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 2000;279:H1220–7.

    PubMed  CAS  Google Scholar 

  • Stepien O, Gogusev J, Zhu DL, Iouzalen L, Herembert T, Drueke TB, et al. Amlodipine inhibition of serum-, thrombin-, or fibroblast growth factor-induced vascular smooth-muscle cell proliferation. J Cardiovasc Pharmacol 1998;31:786–93.

    Article  PubMed  CAS  Google Scholar 

  • Stepien O, Zhang Y, Zhu D, Marche P. Dual mechanism of action of amlodipine in human vascular smooth muscle cells. J Hypertens 2002;20:95–102.

    Article  PubMed  CAS  Google Scholar 

  • Tasaka S, Ohmori H, Gomi N. Synthesis and structure-activity analysis of novel dihydropyridine derivatives to overcome multidrug resistance. Bioorg Med Chem Lett 2001;11:275–77.

    Article  PubMed  CAS  Google Scholar 

  • Taylor JM, Simpson RU. Inhibition of cancer cell growth by calcium channel antagonists in the athymic mouse. Cancer Res 1992;52:2413–18.

    PubMed  CAS  Google Scholar 

  • Tsien RW, Tsien RY. Calcium channels, stores and oscillations. Annu Rev Cell Biol 1990;6:715–60.

    Article  PubMed  CAS  Google Scholar 

  • Tsuruo T, Iida H, Tsukagoshi S, Sakuri Y. Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res 1981;41(5):1967–72.

    PubMed  CAS  Google Scholar 

  • Tsuruo T, Iida H, Tsukagoshi S, Sakurai Y. Potentiation of vincristine and adriamycin effects in human hemopoietic tumor cell lines by calcium antagonists and calmodulin inhibitors. Cancer Res 1983;43:2267–72.

    PubMed  CAS  Google Scholar 

  • Twentyman PR. Cyclosporins as drug resistance modifiers. Biochem Pharmacol 1992;43(1):109–17.

    Article  PubMed  CAS  Google Scholar 

  • Waters D, Lesperance J. Calcium channel blockers and coronary atherosclerosis: from the rabbit to the real world. Am Heart J 1994;128:1309–16.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida J, Ishibashi T, Nishio M. Antiproliferative effect of Ca2+ channel blockers on human epidermoid carcinoma A431 cells. Eur J Pharmacol 2003;472:23–31.

    Article  PubMed  CAS  Google Scholar 

  • Zernig G. Widening potential for Ca2+ antagonists: non-L-type Ca2+ channel interaction. Trends Pharmacol Sci 1990;11:38–44.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from Iran National Sciences Foundation (INSF). Authors would also like to thank the research council of Medical Sciences/University of Tehran for facilitating this research project. We are also thankful to Dr. M.R. Khoshayand for his scientific advice on statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Azizi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bazargan, L., Fouladdel, S., Shafiee, A. et al. Evaluation of anticancer effects of newly synthesized dihydropyridine derivatives in comparison to verapamil and doxorubicin on T47D parental and resistant cell lines in vitro. Cell Biol Toxicol 24, 165–174 (2008). https://doi.org/10.1007/s10565-007-9026-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-007-9026-x

Keywords

Navigation