Skip to main content
Log in

Antioxidative role of melatonin in organophosphate toxicity in rats

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Previous studies revealed that oxidative stress could be an important component of the mechanism of organophosphate (OP) compound toxicity. The aim of the present study was to investigate both prophylactic and therapeutic effects of melatonin against fenthion-induced oxidative stress in rats. Therefore, we determined the changes in the levels of reduced glutathione (GSH) and malondialdehyde (MDA) in the whole blood, brain, pectoral muscle, liver, lung, heart, kidney, pancreas, and jejunum. Also, the changes in the levels of serum nitrite and nitrate, ascorbic acid, retinal, b-carotene, and ceruloplasmin were measured. In addition, activities of enzymatic antioxidants superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) in erythrocyte of normal and experimental animals were measured. It was found that fenthion administration increased the levels of MDA in all tissues and decreased or increased the levels of GSH in some tissues. In comparison to nitrate, nitrite and ascorbic acid levels in the serum of experimental groups, there was no significant difference between groups. However, fenthion toxicity led to decrease in retinol and β-carotene levels; melatonin administration significantly prevented this decrease. Serum ceruloplasmin level was increased due to fenthion administration, but prophylactic and therapeutic melatonin administration inhibited the increase in ceruloplasmin level of serum. There was no significant change in SOD levels in melatonin-administered groups. Melatonin modulates the fenthion-induced changes in the activities of GPx and CAT. In conclusion, the results of the current study revealed that OP toxicity, induced by fenthion, activated oxidant systems in all antioxidant systems in some tissues. Melatonin administration led to a marked increase in antioxidant activity and inhibited lipid peroxidation in most of tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdollahi M, Mostafalou S, Pournourmohammadi S, Shadnia S. Oxidative stress and cholinesterase inhibition in saliva and plasma of rats following subchronic exposure to malathion. Comp Biochem Physiol C Toxicol Pharmacol 2004;137:29–34.

    Article  PubMed  CAS  Google Scholar 

  • Aebi H. Catalase in vitro. Methods Enzymol 1984;105:121–6.

    PubMed  CAS  Google Scholar 

  • Altuntas I, Kilinc I, Orhan H, Demirel R, Koylu H, Delibas N. The effects of diazinon on lipid peroxidation and antioxidant enzymes in erythrocytes in vitro. Hum Exp Toxicol 2004;23:9–13.

    Article  PubMed  CAS  Google Scholar 

  • Beutler E, Dubon O, Kelly BM. Improved method for the determination of blood glutathione. J Lab Clin Med 1963;61:882–8.

    PubMed  CAS  Google Scholar 

  • Blanchard B, Pompon D, Ducrocq C. Nitrosation of melatonin by nitric oxide and peroxynitrite. J Pineal Res 2000;29:184–92.

    Article  PubMed  CAS  Google Scholar 

  • Cankayali I, Demirag K, Eris O, Ersoz B, Moral AR. The effects of N-acetylcysteine on oxidative stress in organophosphate poisoning model. Adv Ther 2005;22:107–16.

    PubMed  CAS  Google Scholar 

  • Cardinali DP, Brusco LI, Lloret SP, Furio AM. Melatonin in sleep disorders and jet-lag. Neuro Endocrinol Lett 2002;23(Suppl 1):9–13.

    PubMed  CAS  Google Scholar 

  • Dandapani M, Zachariah A, Kavitha MR, Jeyaseelan L, Oommen A. Oxidative damage in intermediate syndrome of acute organophosphorous poisoning. Indian J Med Res 2003;117:253–9.

    PubMed  CAS  Google Scholar 

  • De Bleecker J, Lison D, Van Den Abeele K, Willems J, De Reuck J. Acute and subacute organophosphate poisoning in the rat. Neurotoxicology 1994;15(2):341–8.

    PubMed  CAS  Google Scholar 

  • Elango N, Samuel S, Chinnakkannu P. Enzymatic and non-enzymatic antioxidant status in stage (III) human oral squamous cell carcinoma and treated with radical radio therapy: influence of selenium supplementation. Clin Chim Acta 2006;373:92–8.

    Article  PubMed  CAS  Google Scholar 

  • Flohe L, Otting F. Superoxide dismutase assays. Methods Enzymol 1984;105:93–104.

    Article  PubMed  CAS  Google Scholar 

  • Gokalp O, Gulle K, Sulak O, Cicek E, Altuntas I. The effects of methidathion on liver: role of vitamins E and C. Toxicol Ind Health 2003;19:63–7.

    Article  PubMed  CAS  Google Scholar 

  • Gultekin F, Patat S, Akca H, Akdogan M, Altuntas I. Melatonin can suppress the cytotoxic effects of chlorpyrifos on human hepG2 cell lines. Hum Exp Toxicol 2006;25(2):47–55.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi K, Noguchi N, Niki E. Action of nitric oxide as an antioxidant against oxidation of soybean phosphatidylcholine liposomal membranes. FEBS Lett 1995;370:37–40.

    Article  PubMed  CAS  Google Scholar 

  • Jain SK, McVie R, Duett J, Herbst JJ. Erythrocyte membrane lipid peroxidase and glycolylated hemoglobin in diabetes. Diabetes 1989;38:1539–43.

    Article  PubMed  CAS  Google Scholar 

  • Jessup W, Mohr D, Gieseg SP, Dean RT, Stocker R. The participation of nitric oxide in cell free- and its restriction of macrophage-mediated oxidation of low-density lipoprotein. Biochim Biophys Acta 1992;1180:73–82.

    PubMed  CAS  Google Scholar 

  • Kamanyire R, Karalliedde L. Organophosphate toxicity and occupational exposure. Occupational Med 2004;54:69–75.

    Article  CAS  Google Scholar 

  • Karalliedde L, Edwards P, Marrs TC. Variables influencing the toxicity of organophosphates in humans. Food Chem Toxicol 2003;41:1–13.

    Article  PubMed  CAS  Google Scholar 

  • Karaoz E, Gultekin F, Akdogan M, Oncu M, Gokcimen A. Protective role of melatonin and a combination of vitamin C and vitamin E on lung toxicity induced by chlorpyrifos-ethyl in rats. Exp Toxicol Pathol 2002;54(2):97–108.

    Article  PubMed  CAS  Google Scholar 

  • Kwong TC. Organophosphate pesticides: biochemistry and clinical toxicology. Ther Drug Monit 2002;24:144–9.

    Article  PubMed  CAS  Google Scholar 

  • Milatovic D, Gupta RC, Aschner M. Anticholinesterase toxicity and oxidative stress. Sci World J 2006;6:295–310.

    CAS  Google Scholar 

  • Miranda KM, Espey MG, Wink DA. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 2001;5:62–71.

    Article  PubMed  CAS  Google Scholar 

  • Nogues MR, Giralt M, Romeu M, Mulero M, Sanchez-Martos V, Rodriguez E, et al. Melatonin reduces oxidative stress in erythrocytes and plasma of senescence-accelerated mice. J Pineal Res 2006;41:142–9.

    Article  PubMed  CAS  Google Scholar 

  • Olson KR. Management of the poisoned patient. Basic and clinical pharmacology. In: Katzung BG, editor. McGraw Hill, Singapore, 2004:982–94.

  • Omaye ST, Turnbul JD, Savberlich HE. Ascorbic acid analysis. II. Determination after derivatisation with 2.2. dinitrophenylhidrazine. Selected methods for determination of ascorbic acid in animal cells tissues and fluids. In: McCormick DB, Wright LD, editors. Methods in Enzymology, 62. New York, USA: Academic Press; 1979. p. 7–8.

    Google Scholar 

  • Oncu M, Gultekin F, Karaoz E, Altuntas I, Delibas N. Nephrotoxicity in rats induced by chlorpryfos-ethyl and ameliorating effects of antioxidants. Hum Exp Toxicol 2002;21(4):223–30.

    Article  PubMed  CAS  Google Scholar 

  • Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 1967;70:158–69.

    PubMed  CAS  Google Scholar 

  • Schosinsky KH, Lehmann HP, Beeler MF. Measurement of ceruloplasmin from its oxidase activity in serum by use of o-dianisidine dihydrochloride. Clin Chem 1974;20:1556–63.

    PubMed  CAS  Google Scholar 

  • Suzuki I, Katoh N. A simple and cheap method for measuring serum vitamin A in cattle using spectrophototmeter. Jpn J Vet Sci 1990;52:1281–3.

    CAS  Google Scholar 

  • Taylor P. Anticholinesterase agents. In: Brunton LL, Lazo JS, Parker KL, editors. Goodman and Gilman’s the pharmacological basis of therapeutics. New York: McGraw-Hill; 2006. p. 201–16.

    Google Scholar 

  • Taysi S, Koc M, Buyukokuroglu ME, Altinkaynak K, Sahin YN. Melatonin reduces lipid peroxidation and nitric oxide during irradiation-induced oxidative injury in the rat liver. J Pineal Res 2003;34(3):173–7.

    Article  PubMed  CAS  Google Scholar 

  • Uriu-Adams JY, Keen CL. Copper, oxidative stress, and human health. Mol Aspects Med 2005;26:268–98.

    Article  PubMed  CAS  Google Scholar 

  • Yurumez Y, Cemek M, Yavuz Y, Birdane YO, Buyukokuroglu ME. Beneficial effect of N-acetylcysteine against organophosphate toxicity in mice. Biol Pharm Bull 2007a;30:490–4.

    Article  PubMed  CAS  Google Scholar 

  • Yurumez Y, Ikizceli I, Sozuer EM, Soyuer I, Yavuz Y, Avsarogulları L, et al. Effect of interleukin-10 on tissue damage caused by organophosphate poisoning. Basic Clin Pharmacol Toxicol 2007b;100(5):323–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Emin Buyukokuroglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buyukokuroglu, M.E., Cemek, M., Yurumez, Y. et al. Antioxidative role of melatonin in organophosphate toxicity in rats. Cell Biol Toxicol 24, 151–158 (2008). https://doi.org/10.1007/s10565-007-9024-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-007-9024-z

Keywords

Navigation