Skip to main content
Log in

Tungstic Acid: A Simple and Effective Solid Catalyst in Terpene Alcohol Oxidation Reactions with Hydrogen Peroxide

  • Original Article
  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

In this work, we report for the first time, the tungstic acid-catalyzed oxidation of terpene alcohols with hydrogen peroxide. This simple, solid, and commercially available catalyst efficiently promoted the conversion of borneol, geraniol and nerol to camphor and epoxide products, respectively. Effects of main reaction parameters, such as catalyst load, the molar ratio of oxidant to the substrate, time, and reaction temperature were investigated. Conversions and selectivity greater than 90% were achieved using 1.0 mol % of H2WO4 after 2 h of reaction at 90 °C. The activation energy was equal to 66 kJmol−1. We propose a reaction mechanism based on the experimental results. This solid catalyst was easily recovered and reused without loss of activity. As far as we know, it is the first time that tungstic acid was used as the catalyst in the oxidation reactions of terpene alcohols.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Can F, Courtois X, Deprez D (2021) Catalysts 11:703

    Article  CAS  Google Scholar 

  2. Ishimoto R, Kamata K, Mizuno N (2012) Angew Chem Int Ed 51:4662

    Article  CAS  Google Scholar 

  3. Das SP, Ankireddy SR, Boruah JJ, Islam NS (2012) RSC Adv 2:7248

    Article  CAS  Google Scholar 

  4. Targhan H, Evans P, Bahrami K (2021) J Ind Eng Chem 104:295

    Article  CAS  Google Scholar 

  5. Martin B, Sedelmeier J, Bouisseau A, Fernando-Rodriguez P, Habber J, Kleinbeck F, Kamptmann S, Susanne F, Hoehn P, Lanz M, Pellegatti L, Venturoni F, Robertson J, Willis MC, Schenckel B (2017) Green Chem 19:1439

    Article  CAS  Google Scholar 

  6. Chen Q, Shen C, He L (2018) Acta Cryst C74:1182

    Google Scholar 

  7. Wang S, Yang G (2015) Chem Rev 115:4893

    Article  CAS  PubMed  Google Scholar 

  8. Ribeiro CJA, Pereira MM, Koshevinikova EF, Kozhevnikov IV, Gusevskaya EV, da Silva Rocha KA (2020) Catal Today 144:166

    Article  Google Scholar 

  9. Coronel NC, da Silva MJ, Ferreira SO, da Silva RC, Natalino R (2019) ChemSelect 4:302

    CAS  Google Scholar 

  10. da Silva MJ, Leles LCA, Natalino R, Ferreira SO, Coronel NC (2018) Catal Lett 148:1202

    Article  Google Scholar 

  11. Dong X, Yu C, Wang D, Zhang Y, Wu P, Hu H, Xue G (2017) Mater Res Bull 85:152

    Article  CAS  Google Scholar 

  12. Denicourt-Nowicki A, Rauchi M, Ali MA, Roucoux A (2019) Catalysts 9:893

    Article  Google Scholar 

  13. Monteiro JLF, Veloso CO (2004) Topic Catal 27:169

    Article  CAS  Google Scholar 

  14. Santos ICMS, Simões MMQ, Pereira MMMS, Martins RRL, Neves MGPMS, Cavaleiro JAS, Cavaleiro AMV (2003) J Mol Catal A 195:253

    Article  CAS  Google Scholar 

  15. Tsolakis N, Bam W, Srai JS, Kumar M (2019) J Clean Prod 222:802

    Article  CAS  Google Scholar 

  16. da Silva MJ, Andrade PHS, Sampaio VFC (2021) Catal Lett 151:2094

    Article  Google Scholar 

  17. da Silva MJ, Leles LCA, Ferreira SO, da Silva RC, Viveiros KV, Chaves DM, Pinheiro PF (2019) ChemSelect 4:7665

    Google Scholar 

  18. da Silva MJ, Lopes NPG, Ferreira SO, da Silva RC, Natalino R, Chaves DM, Teixeira MG (2021) Chem Pap 75:153

    Article  Google Scholar 

  19. da Silva MJ, Andrade PHS, Ferreira SO, Vilanculo CB, Oliveira CM (2018) Catal Lett 148:2516

    Article  Google Scholar 

  20. Choi JH, Kim JK, Park DR, Kang TH, Song JH, Song IK (2013) J Mol Catal A 371:111

    Article  CAS  Google Scholar 

  21. Song IK, Barteau MA (2004) J Mol Catal 212:229

    Article  CAS  Google Scholar 

  22. Patel K, Shrimgarpure P, Patel A (2011) Transition Met Chem 36:171

    Article  CAS  Google Scholar 

  23. Vilanculo CB, da Silva MJ, Rodrigues AA, Ferreira SO, da Silva RC (2021) RSC Adv 11:24072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vilanculo CB, da Silva MJ (2020) New J Chem 44:2813

    Article  CAS  Google Scholar 

  25. Vilanculo CB, da Silva MJ, Teixeira MG, Villareal JA (2020) RSC Adv 10:7691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hida T, Nogusa H (2009) Tetrahedron 65:270

    Article  CAS  Google Scholar 

  27. Viana LAS, da Silva GRN, da Silva MJ (2018) Catal Lett 148:374

    Article  CAS  Google Scholar 

  28. Maiti SK, Malik KMA, Bhattacharyya R (2004) Inorg Chem Commun 7:823

    Article  CAS  Google Scholar 

  29. Venturello C, Alneri E, Ricci M (1983) J Org Chem 48:3831

    Article  CAS  Google Scholar 

  30. Noyori R, Aoki M, Sato K (2003) Chem Commun 16:1977

    Article  Google Scholar 

  31. Li X, Lunkenbein T, Pfeifer V, Jastak M, Nielsen PK, Girgsdies F, Knop-Gericke A, Rosowski F, Schlögl R (2016) Angew Chem Int Ed 55:4092

    Article  CAS  Google Scholar 

  32. Villa AL, De Vos DE, Sels BF, Jacobs PA (1999) J Org Chem 64:7267

    Article  Google Scholar 

  33. Villa AL, Taborda AF, Correa CM (2002) J Mol Catal A Chem 185:269

    Article  Google Scholar 

  34. Carnevali D, Rigamonti MG, Tabanelli T, Patience GS, Cavani F (2018) Appl Catal A: Gen 563:98

    Article  CAS  Google Scholar 

  35. Jadhav AM, Krishnammagari SK, Kim JT, Jeong YT (2017) Tetrahedron 37:5163

    Article  Google Scholar 

  36. Prat D, Lett R (1986) Tetrahedron Lett 27:707

    Article  CAS  Google Scholar 

  37. Chatel G, Monnier C, Kardos N, Voiron C, Andrioletti B, Draye M (2014) Appl Catal A: Gen 478:157

    Article  CAS  Google Scholar 

  38. da Silva MJ, Torres JAV, Vilanculo CB (2022) RSC Adv 12:11796

    Article  Google Scholar 

  39. Batalha DC, Ferreira SO, da Silva RC, da Silva MJ (2020) ChemSelect 5:1976

    CAS  Google Scholar 

  40. Das N, Chowdhury S, Purkayastha RND (2019) Monatsh Chem 150:1255

    Article  CAS  Google Scholar 

  41. Batalha DC, Marins NH, Marques e Silva R, Carreño NLV, Fajardo HV, da Silva MJ (2020) Mol Catal 498:110941

    Article  Google Scholar 

  42. Vilanculo CB, da Silva MJ (2021) Mol Catal 512:111780

    Article  CAS  Google Scholar 

  43. Chatel G, Monnier C, Kardos N, Voironc C, Andrioletti B, Draye M (2014) Appl Catal A 478:157

    Article  CAS  Google Scholar 

  44. Kharche AP, Sankhe SS, Suryawanshi VR, Surani HC, Yadav HR (2020) European J Mol Clin Med 7:3574

    Google Scholar 

  45. Sivamurugan V, Rajkumar GA, Banumathi Arabindoo B, Murugesan V (2005) Indian J Chem 44:144–147

    Google Scholar 

  46. Chen JD, Lempers HEB, Sheldon RA (1996) J Chem SOC, Faraday Trans 92:1807

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from (CNPq and FAPEMIG (Brazil). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Funding

This study was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, 001.

Author information

Authors and Affiliations

Authors

Contributions

M.J. da Silva wrote the manuscript and P.H. da Silva Andrade was responsible by experimental procedures

Corresponding author

Correspondence to Márcio José da Silva.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, M.J., da Silva Andrade, P.H. Tungstic Acid: A Simple and Effective Solid Catalyst in Terpene Alcohol Oxidation Reactions with Hydrogen Peroxide. Catal Surv Asia 27, 155–164 (2023). https://doi.org/10.1007/s10563-023-09387-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-023-09387-x

Keywords

Navigation