Skip to main content
Log in

Catalytic Oxidation of Ethyl Lactate to Ethyl Pyruvate over Au-Based Catalyst Using Authentic Air as Oxidant

  • Original Article
  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Highly dispersed Au nanoparticles supported on Ni–Al mixed metal oxides (Au/NiAl-MMO) were prepared by a facile method, which is significantly efficient for the aerobic oxidation of ethyl lactate using authentic air as the oxidant, achieving 72.6% ethyl lactate conversion and 88.3% selectivity to ethyl pyruvate at 240 °C in a continuous fixed-bed reactor. The catalyst retained its catalytic performance during a long-term stability test. Characterization and experimental studies on the kinetic dependence sequence of the reactants and elementary reaction steps confirmed that the Au/NiAl-MMO catalyst followed the Mars–van Krevelen mechanism, with the activation of O2 as the elementary step. The quasi in situ X-ray photoelectron spectroscopy spectra demonstrated that the active sites in the Au/NiAl-MMO catalyst were Au nanoparticles. This work may provide a novel technique for developing more efficient supported metal catalysts for the aerobic oxidation of ethyl lactate using authentic air as the oxidant.

Graphical abstract

Highly dispersed Au nanoparticle catalyst was facilely prepared for the efficient catalytic oxidation of ethyl lactate with authentic air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Scheme 2

Similar content being viewed by others

References

  1. Mika LT, Csefalvay E, Nemeth A (2018) Chem Rev 118:505–613

    Article  CAS  PubMed  Google Scholar 

  2. Sudarsanam P, Peeters E, Makshina EV, Parvulescu VI, Sels BF (2019) Chem Soc Rev 48:2366–2421

    Article  CAS  PubMed  Google Scholar 

  3. Jeon W, Ban C, Park G, Kim JE, Woo HC, Kim DH (2016) Catal Surv Asia 20:195–209

    Article  Google Scholar 

  4. Li N, Zhang X-L, Zheng X-C, Wang G-H, Wang X-Y, Zheng G-P (2019) Catal Surv Asia 23:171–180

    Article  CAS  Google Scholar 

  5. Nakagawa Y, Tamura M, Tomishige K (2015) Catal Surv Asia 19:249–256

    Article  CAS  Google Scholar 

  6. Dusselier M, Wouwe PV, Dewaele A, Jacobs PA, Sels BF (2015) Science 349:78–80

    Article  CAS  PubMed  Google Scholar 

  7. Li G, Hou B, Wang A, Xin X, Cong Y, Wang X, Li N, Zhang T (2019) Angew Chem Int Ed 58:12154–12158

    Article  CAS  Google Scholar 

  8. Li L, Zhang T, Guo Z, Liu X, Guo Y, Huang Y, Wang Y (2021) Ind Eng Chem Res 60:11699–11706

    Article  CAS  Google Scholar 

  9. Zhang D, Zhao Y-P, Fan X, Liu Z-Q, Wang R-Y, Wei X-Y (2018) Catal Surv Asia 22:129–135

    Article  CAS  Google Scholar 

  10. Zhu Y, Zhao W, Zhang J, An Z, Ma X, Zhang Z, Jiang Y, Zheng L, Shu X, Song H, Xiang X, He J (2020) ACS Catal 10:8032–8041

    Article  CAS  Google Scholar 

  11. Xie C, Song J, Wu H, Hu Y, Liu H, Zhang Z, Zhang P, Chen B, Han B (2019) J Am Chem Soc 141:4002–4009

    Article  CAS  PubMed  Google Scholar 

  12. Lu T, Zou J, Zhan Y, Yang X, Wen Y, Wang X, Zhou L, Xu J (2018) ACS Catal 8:1287–1296

    Article  CAS  Google Scholar 

  13. Dusselier M, Van Wouwe P, Dewaele A, Makshina E, Sels BF (2013) Energy Environ Sci 6:1415–1442

    Article  CAS  Google Scholar 

  14. Park J, Cho H, Hwang D, Kim S, Moon I, Kim M (2018) Ind Eng Chem Res 57:11955–11962

    Article  CAS  Google Scholar 

  15. Zhang Q, Xiang S, Zhang Q, Wang B, Mayoral A, Liu W, Wang Y, Liu Y, Shi J, Yang G, Luo J, Chen X, Terasaki O, Gilson J-P, Yu J (2020) Chem Mater 32:751–758

    Article  CAS  Google Scholar 

  16. Tao L-Z, Chai S-H, Zuo Y, Zheng W-T, Liang Y, Xu B-Q (2010) Catal Today 158:310–316

    Article  CAS  Google Scholar 

  17. Serrano-Ruiz JC, Dumesic JA (2009) Chemsuschem 2:581–586

    Article  CAS  PubMed  Google Scholar 

  18. Sad ME, Pena LFG, Padro CL, Apesteguia CR (2018) Catal Today 302:203–209

    Article  CAS  Google Scholar 

  19. Murphy BM, Letterio MP, Xu BJ (2016) ACS Catal 6:5117–5131

    Article  CAS  Google Scholar 

  20. Pang J, Li XL, Zou W, Tang C, Wang Y, Dong L (2018) ChemistrySelect 3:12389–12395

    Article  CAS  Google Scholar 

  21. Zhao X, Zhang C, Xu C, Li H, Huang H, Song L, Li X (2016) Chem Eng J 296:217–224

    Article  CAS  Google Scholar 

  22. Zhang W, Innocenti G, Oulego P, Gitis V, Wu H, Ensing B, Cavani F, Rothenberg G, Shiju NR (2018) ACS Catal 8:2365–2374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang W, Oulego P, Sharma SK, Yang X, Li L-J, Rothenberg G, Shiju NR (2020) ACS Catal 10:3958–3967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huchede M, Morvan D, Bellière-Bacab V, Milleta JMM (2020) Appl Catal A Gen 601:117619

    Article  CAS  Google Scholar 

  25. Huchede M, Morvan D, Vera R, Bellière-Bacab V, Milleta JMM (2021) Appl Catal A Gen 617:118016

    Article  CAS  Google Scholar 

  26. Zhang W, Oulego P, Slot TK, Rothenberg G, Shiju NR (2019) ChemCatChem 11:3381–3387

    Article  CAS  Google Scholar 

  27. Wang D, Liu W, Xie Z, Tian S, Su D, Qi W (2020) Catal Today 347:96–101

    Article  CAS  Google Scholar 

  28. Yin C, Li X, Dai Y, Chen Z, Yang D, Liu R, Zou W, Tang C, Dong L (2021) Green Chem 23:328–332

    Article  CAS  Google Scholar 

  29. Doke DS, Khomane SB, Pandhare SL, Dongare MK, Dumeignil F, Umbarkar SB (2019) Appl Catal A Gen 587:117246

    Article  CAS  Google Scholar 

  30. Wu J, Hua W, Yue Y, Gao Z (2020) ACS Omega 5:16200–16207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang G, Wang P, Zhang X, Wei Q-H, Wu S, Xie Z (2020) Nanoscale 12:7797–7803

    Article  CAS  PubMed  Google Scholar 

  32. Tao L, Bi X, Zhang L, Chen G, Zhao P, Yang J-L, Meng X (2020) Appl Catal A Gen 605:117813

    Article  CAS  Google Scholar 

  33. Jing Q, Li H (2019) Appl Catal B Environ 256:117858

    Article  CAS  Google Scholar 

  34. Kim K-H, Ihm S-K (2011) J Hazard Mater 186:16–34

    Article  CAS  PubMed  Google Scholar 

  35. Ertl G, Knözinger H, Weitkamp J (2008) Handbook of heterogeneous catalysis. Wiley, Weinheim

    Book  Google Scholar 

  36. Hughes MD, Xu Y-J, Jenkins P, McMorn P, Landon P, Enache DI, Carley AF, Attard GA, Hutchings GJ, King F, Stitt EH, Johnston P, Griffin K, Kiely CJ (2012) Nature 437:1132–1135

    Article  CAS  Google Scholar 

  37. Corma A, Concepción P, Boronat M, Sabater MJ, Navas J, Yacaman MJ, Larios E, Posadas A, López-Quintela MA, Buceta D, Mendoza E, Guilera G, Mayoral A (2013) Nature Chem 5:775–781

    Article  CAS  Google Scholar 

  38. Agarwal N, Freakley SJ, McVicker RU, Althahban SM, Dimitratos N, He Q, Morgan DJ, Jenkins RL, Willock DJ, Taylor SH, Kiely CJ, Hutchings GJ (2017) Science 358:223–226

    Article  CAS  PubMed  Google Scholar 

  39. Liu Y, Tsunoyama H, Akita T, Tsukuda T (2010) Chem Commun 46:550–552

    Article  CAS  Google Scholar 

  40. Takahashi M, Koizumi H, Chun W-J, Kori M, Imaoka T, Yamamoto K (2017) Sci Adv 3:e1700101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Wang L, Zhu Y, Wang J-Q, Liu F, Huang J, Meng X, Basset J-M, Han Y, Xiao F-S (2015) Nat Commun 6:6957

    Article  CAS  PubMed  Google Scholar 

  42. Li JJ, Chen W, Zhao H, Zheng XS, Wu LH, Pan HB, Zhu J, Chen Y, Lu J-L (2017) J Catal 352:371–381

    Article  CAS  Google Scholar 

  43. Zhu J, Yang M, Yu Y, Zhu Y, Sui Z, Zhou X, Holmen A, Chen D (2015) ACS Catal 5:6310–6319

    Article  CAS  Google Scholar 

  44. Bond GC, Louis C, Thompson DT (2007) Catalysis by Gold, chapter 4, 72–113 Imperial College

  45. Zhou X, Shen Q, Yuan K, Yang W, Chen Q, Geng Z, Zhang J, Shao X, Chen W, Xu G, Yang X, Wu K (2018) J Am Chem Soc 140:554–557

    Article  CAS  PubMed  Google Scholar 

  46. Chenakin S, Kruse N (2018) J Catal 358:224–236

    Article  CAS  Google Scholar 

  47. Wang Y, Widmann D, Heenemann M, Diemant T, Biskupek J, Schlögl R, Behm RJ (2017) J Catal 354:46–60

    Article  CAS  Google Scholar 

  48. Mihaylov M, Knoezinger H, Hadjiivanov K, Gates BC (2007) Chem Ing Tech 79:795–806

    Article  CAS  Google Scholar 

  49. Li Q, Xie W, Chen G, Li Y, Huang Y, Chen X (2015) Nano Res 8:3075–3084

    Article  CAS  Google Scholar 

  50. Zhang W, Innocenti G, Ferbinteanu M, Ramos-Fernandez EV, Sepulveda-Escribano A, Wu H, Cavani F, Rothenberg G, Shiju NR (2018) Catal Sci Technol 8:3737–3747

    Article  CAS  Google Scholar 

  51. Makwana VD, Son Y-C, Howell AR, Suib SL (2002) J Catal 210:46–52

    Article  CAS  Google Scholar 

  52. Behravesh E, Melander MM, Wärnå J, Salmi T, Honkala K, Murzin DY (2021) J Catal 394:193–205

    Article  CAS  Google Scholar 

  53. Xu Y, Mavrikakis M (2003) J Phys Chem B 107:9298–9307

    Article  CAS  Google Scholar 

  54. Farrauto RJ, Bartholomew CH (1997) Fundamentals of industrial catalytic process. Blackie

  55. Li X, Zhang J, Liu W, Ren Z, Wang H, Zhu Y, Yang Y, Wei M (2020) Appl Catal A Gen 598:117558

    Article  CAS  Google Scholar 

  56. Bu Y, Chen Y, Jiang G, Hou X, Li S, Zhang Z (2020) Appl Catal B Environ 260:118138

    Article  CAS  Google Scholar 

  57. Huang Y, Chen X, Deng Y, Zhou D, Wang L (2015) Chem Eng J 269:434–443

    Article  CAS  Google Scholar 

  58. Zhang C, Luo J, Zhou Y, Jiang Q, Liang C (2020) J Catal 381:14–25

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China (2018YFB0604801), National Natural Science Foundation of China (22002007), the Fundamental Research Funds for the Central Universities (XK2022-12), the Beijing Advanced Innovation Center for Soft Matter Science and Engineering of the Beijing University of Chemical Technology (21530009067).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Zhang or Feng-Shou Xiao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2585 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, S., Zhang, J., Wu, Z. et al. Catalytic Oxidation of Ethyl Lactate to Ethyl Pyruvate over Au-Based Catalyst Using Authentic Air as Oxidant. Catal Surv Asia 26, 211–220 (2022). https://doi.org/10.1007/s10563-022-09359-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-022-09359-7

Keywords

Navigation