Skip to main content

Advertisement

Log in

Cobalt-Based Electrocatalysts for Water Splitting: An Overview

  • Review Article
  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Recently, considering the increasing global energy demands and fossil fuel issues, many researchers have focused on designing and developing clean renewable energy systems. Electrolyzers as promising candidates for hydrogen production are of attractive interest, but the expensive noble-metal based catalysts are the main obstacle to their wide applications. Transition metal-based catalysts such as Co, Ni, Mn, and Fe have shown to be promising substitutes. Among them, Co-based catalysts are rapidly rising as highly efficient catalysts with diverse global study activities. In this review, we have summarized recent progress in Co-based materials as hydrogen evolution reaction and oxygen evolution reaction electrocatalysts from an electrocatalytic performance point-of-view, and also the approaches behind the enhanced electrocatalytic activities such as morphology and structure rational design, controlling the chemical composition, and hybridizing with carbonaceous supports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Copyright 2019, Nanoscale

Fig. 13

Copyright 2019, Nano-Micro Lett

Fig. 14

Similar content being viewed by others

References

  1. Fu G, Lee JM (2019) Ternary metal sulfides for electrocatalytic energy conversion. J Mater Chem A 7(16):9386–9405

    CAS  Google Scholar 

  2. Zeng M, Li Y (2015) Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. J Mater Chem A 3(29):14942–14962

    CAS  Google Scholar 

  3. Boudart M, Gérald DM (2014) Kinetics of heterogeneous catalytic reactions. Princeton University Press, Princeton

    Google Scholar 

  4. Dau H, Limberg C, Reier T, Risch M, Roggan S, Strasser P (2010) The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis. ChemCatChem 2:724–761

    CAS  Google Scholar 

  5. Frydendal R, Paoli EA, Knudsen BP, Wickman B, Malacrida P, Stephens IE, Chorkendorff I (2014) Benchmarking the stability of oxygen evolution reaction catalysts: the importance of monitoring mass losses. ChemElectroChem 1:2075–2081

    CAS  Google Scholar 

  6. Ursua A, Gandia LM, Sanchis P (2012) Hydrogen production from water electrolysis: current status and future trends. Proc, IEEE 100:410–426

    CAS  Google Scholar 

  7. Mao Y, Chen J, Wang H, Hu P (2015) Catalyst screening: Refinement of the origin of the volcano curve and its implication in heterogeneous catalysis. Chin J Catal 36(9):1596–1605

    CAS  Google Scholar 

  8. Zhang T, Zhu Y, Lee JY (2018) Unconventional noble metal-free catalysts for oxygen evolution in aqueous systems. J Mater Chem A 6(18):8147–8158

    CAS  Google Scholar 

  9. Reddington E, Sapienza A, Gurau B, Viswanathan R, Sarangapani S, Smotkin ES, Mallouk TE (1998) Combinatorial electrochemistry: a highly parallel, optical screening method for discovery of better electrocatalysts. Science 280:1735–1737

    CAS  PubMed  Google Scholar 

  10. Muster TH, Trinchi A, Markley TA, Lau D, Martin P, Bradbury A, Bendavid A, Dligatch S (2011) A review of high throughput and combinatorial electrochemistry. Electrochim Acta 56:9679–9699

    CAS  Google Scholar 

  11. Hossain MK, Katherine AW (2018) Use of dendritic cell receptors as targets for enhancing anti-cancer immune responses. Sci Rep 8:2543–2553

    Google Scholar 

  12. Tan JB, Sahoo P, Wang JW, Hu YW, Zhang ZM, Lu TB (2018) Highly efficient oxygen evolution electrocatalysts prepared by using reduction-engraved ferrites on graphene oxide. Inorg Chem Front 5(2):310–318

    CAS  Google Scholar 

  13. Favaro M, Yang J, Nappini S, Magnano E, Toma FM, Crumlin EJ, Yano J, Sharp ID (2017) Understanding the oxygen evolution reaction mechanism on CoOx using operando ambient-pressure X-ray photoelectron spectroscopy. ACS 139(26):8960–8970

    CAS  Google Scholar 

  14. Liardet L, Hu X (2018) Amorphous cobalt vanadium oxide as a highly active electrocatalyst for oxygen evolution. ACS Catal 8(1):644–650

    CAS  PubMed  Google Scholar 

  15. Wang X, Huang X, Gao W, Tang Y, Jiang P, Lan K, Yang R, Wang B, Li R (2018) Metal–organic framework derived CoTe2 encapsulated in nitrogen-doped carbon nanotube frameworks: a high-efficiency bifunctional electrocatalyst for overall water splitting. J Mater Chem A 6:3684–3691

    CAS  Google Scholar 

  16. Gao R, Yu G, Chen W, Li GD, Gao S, Zhang X, Shen X, Huang X, Zou X (2018) Host-guest interaction creates hydrogen-evolution electrocatalytic active sites in 3d transition metal-intercalated titanates. ACS Appl Mater Interfaces 10(1):696–703

    CAS  PubMed  Google Scholar 

  17. Feng P, Cheng X, Li J, Luo X (2018) Calcined nickel-cobalt mixed metal phosphonate with efficient electrocatalytic activity for oxygen evolution reaction. ChemistrySelect 3:760–764

    CAS  Google Scholar 

  18. Zhu M, Zhou Y, Sun Y, Zhu C, Hu L, Gao J, Huang H, Liu Y, Kang Z (2018) Cobalt phosphide/carbon dots composite as an efficient electrocatalyst for oxygen evolution reaction. Dalton Trans 47(15):5459–5464

    CAS  PubMed  Google Scholar 

  19. Xu X, Zhong Z, Yan X, Kang L, Yao J (2018) Cobalt layered double hydroxide nanosheets synthesized in water–methanol solution as oxygen evolution electrocatalysts. J Mater Chem A 6(14):5999–6006

    Google Scholar 

  20. Li H, Ke F, Zhu J (2018) MOF-derived ultrathin cobalt phosphide nanosheets as efficient bifunctional hydrogen evolution reaction and oxygen evolution reaction electrocatalysts. Nanomaterials 8(89):1–12

    Google Scholar 

  21. Li H, Li Q, Wen P, Williams TB, Adhikari S, Dun C, Lu C, Itanze D, Jiang L, Carroll DL, Donati GL, Lundin PM, Qiu Y, Geyer SM (2018) Colloidal cobalt phosphide nanocrystals as trifunctional electrocatalysts for overall water splitting powered by a zinc–air battery. Adv Mater 1705796:1–8

    Google Scholar 

  22. Xu Y, Wu R, Zhang J, Shi Y, Zhang B (2013) Anion-exchange synthesis of nanoporous FeP nanosheets as electrocatalysts for hydrogen evolution reaction. Chem Commun 49(59):6656–6658

    CAS  Google Scholar 

  23. Popczun EJ, McKone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE (2013) Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc 135:9267–9270

    CAS  PubMed  Google Scholar 

  24. Xu Y, Zhang F, Sheng T, Ye T, Yi D, Yang Y, Liu S, Wang X, Yao J (2019) Clarifying the controversial catalytic active sites of Co3O4 for the oxygen evolution reaction. J Mater Chem A 7(40):23191–23198

    CAS  Google Scholar 

  25. McAlpin J, Surendranath Y, Dinca M, Stich TA, Stoian SA, Casey WH, Nocera DG, Britt RD (2010) EPR evidence for Co (IV) species produced during water oxidation at neutral pH. ACS 132(20):6882–6883

    CAS  Google Scholar 

  26. Suen NT, Hung SF, Quan Q, Zhang N, Xu YJ, Chen HM (2017) Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev 46(2):337–365

    CAS  PubMed  Google Scholar 

  27. Glasscott MW, Pendergast AD, Goines S, Bishop AR, Hoang AT, Renault C, Dick JE (2019) Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis. Nat comm 10(1):1–8

    Google Scholar 

  28. Cook TR, Dogutan DK, Reece SY, Surendranath Y, Teets TS, Nocera DG (2010) Solar energy supply and storage for the legacy and nonlegacy worlds. Chem Rev 110:6474–6502

    CAS  PubMed  Google Scholar 

  29. Seh Z, Kibsgaard J, Dickens C, Chorkendorff I, Nørskov J, Jaramillo T (2017) Combining theory and experiment in electrocatalysis: insights into materials design. Science 355:4998

    Google Scholar 

  30. Man IC, Su HY, Calle-Vallejo F, Hansen HA, Martinez JI, Inoglu NG, Kitchin J, Jaramillo TF, Norskov JK, Rossmeisl J (2011) Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3(7):1159–1165

    CAS  Google Scholar 

  31. Anantharaj S, Reddy PN, Kundu S (2017) Core-oxidized amorphous cobalt phosphide nanostructures: an advanced and highly efficient oxygen evolution catalyst. Inorg Chem 56:1742–1756

    CAS  PubMed  Google Scholar 

  32. Blanchard PE, Grosvenor AP, Cavell RG, Mar A (2008) Preparation and electrochemical properties of Cr doped LiV3O8 cathode for lithium ion batteries. Chem Mater 20(22):7081–7088

    CAS  Google Scholar 

  33. Loni E, Siadati MH, Shokuhfar A (2020) Mesoporous cobaltecobalt phosphide electrocatalyst for water splitting. Mater Today Energy 16:1–8

    Google Scholar 

  34. Masa J, Barwe S, Andronescu C, Sinev I, Ruff A, Jayaramulu K, Elumeeva K, Konkena B, Cuenya BR, Schuhmann W (2016) Low overpotential water splitting using cobalt–cobalt phosphide nanoparticles supported on nickel foam. ACS Energy Lett 1:1192–1198

    CAS  Google Scholar 

  35. Lin J, Yan Y, Li C, Si X, Wang H, Qi J, Cao J, Zhong Z, Fei W, Feng J (2019) Bifunctional electrocatalysts based on Mo-doped NiCoP nanosheet arrays for overall water splitting. Nano-Micro Lett 11(55):1–11

    CAS  Google Scholar 

  36. Yu J, Tian Y, Zhou F, Zhang M, Chen R, Liu Q, Liu J, Xu CY, Wang J (2018) Metallic and superhydrophilic nickel cobalt diselenide nanosheets electrodeposited on carbon cloth as a bifunctional electrocatalyst. J Mater Chem A 6(36):17353–17360

    CAS  Google Scholar 

  37. Li Y, Huang B, Sun Y, Luo M, Yang Y, Qin Y, Wang L, Li C, Lv F, Zhang W, Guo S (2019) Multimetal borides nanochains as efficient electrocatalysts for overall water splitting. Small 15:1804212

    Google Scholar 

  38. Kupka J, Budniok A (1990) Electrolytic oxygen evolution on Ni–Co–P alloys. J Appl Electrochem 20:1015–1020

    CAS  Google Scholar 

  39. Wu Z, Nie D, Song M, Jiao T, Fu G, Liu X (2019) Facile synthesis of Co–Fe–B–P nanochains as an efficient bifunctional electrocatalyst for overall water-splitting. Nanoscale 11(15):7506–7512

    CAS  PubMed  Google Scholar 

  40. Wang YQ, Zhang BH, Pan W, Ma HY, Zhang JT (2017) 3D porous nickel–cobalt nitrides supported on nickel foam as efficient electrocatalysts for overall water splitting. Chemsuschem 10:4170–4177

    CAS  PubMed  Google Scholar 

  41. Masa J, Weide P, Peeters D, Sinev I, Xia W, Sun Z, Somsen C, Muhler M, Schuhmann W (2016) Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: oxygen and hydrogen evolution. Adv Energy Mater 6(6):1502313

    Google Scholar 

  42. Xue Z, Kang J, Guo D, Zhu C, Li C, Zhang X, Chen Y (2018) Self-supported cobalt nitride porous nanowire arrays as bifunctional electrocatalyst for overall water splitting. Electrochim Acta 273:229–238

    CAS  Google Scholar 

  43. Tian J, Liu Q, Asiri AM, Sun X (2014) Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J Am Chem Soc 136(21):7587–7590

    CAS  PubMed  Google Scholar 

  44. Goryachev A, Gao L, Zhang Y, Rohling RY, Vervuurt RHJ, Bol AA, Hofmann JP, Hensen EJM (2018) Stability of CoPx electrocatalysts in continuous and interrupted acidic electrolysis of water. ChemElectroChem 5(8):1230–1239

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Gao J, Liu L, Qiu HJ, Wang Y (2017) Engineering phase transformation of cobalt selenide in carbon cages and the phases’ bifunctional electrocatalytic activity for water splitting. Nanotechnology 28:315401

    PubMed  Google Scholar 

  46. Fan HJ, Gosele U, Zacharias M (2007) Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review. Small 3:1660–1671

    CAS  PubMed  Google Scholar 

  47. Li BQ, Tang C, Wang HF, Zhu XL, Zhang Q (2016) An aqueous preoxidation method for monolithic perovskite electrocatalysts with enhanced water oxidation performance. Sci Adv 2:1600495

    Google Scholar 

  48. Wang T, Wu L, Xu X, Sun Y, Wang Y, Zhong W, Du Y (2017) An efficient Co3S4/CoP hybrid catalyst for electrocatalytic hydrogen evolution. Sci Rep 7(1):1–9

    PubMed  PubMed Central  Google Scholar 

  49. Miao Y, Li F, Zhou Y, Lai F, Lu H, Liu T (2017) Engineering a nanotubular mesoporous cobalt phosphide electrocatalyst by the Kirkendall effect towards highly efficient hydrogen evolution reactions. Nanoscale 9(42):16313–16320

    CAS  PubMed  Google Scholar 

  50. Kanan MW, Nocera DG (2008) In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321:1072–1075

    CAS  PubMed  Google Scholar 

  51. Zhao S, Li C, Huang H, Liu Y, Kang Z (2015) Carbon nanodots modified cobalt phosphate as efficient electrocatalyst for water oxidation. J Materiomics 1(3):236–244

    Google Scholar 

  52. Costentina C, Nocera DG (2017) Self-healing catalysis in water. PNAS 114(51):13380–13384

    Google Scholar 

  53. Song W, Ren Z, Chen SY, Meng Y, Biswas S, Nandi P, Elsen HA, Gao PX, Suib SL (2016) Ni-and Mn-promoted mesoporous Co3O4: a stable bifunctional catalyst with surface-structure-dependent activity for oxygen reduction reaction and oxygen evolution reaction. ACS Appl Mater Interfaces 8(32):20802–20813

    CAS  PubMed  Google Scholar 

  54. Song F, Schenk K, Hu X (2016) A nanoporous oxygen evolution catalyst synthesized by selective electrochemical etching of perovskite hydroxide CoSn(OH)6 nanocubes. Energy Environ Sci 9:473–477

    CAS  Google Scholar 

  55. Chen S, Duan J, Jaroniec M, Qiao SZ (2013) Three-dimensional N-doped graphene hydrogel/NiCo double hydroxide electrocatalysts for highly efficient oxygen evolution. Angew Chem Int Ed 52:13567–13570

    CAS  Google Scholar 

  56. Peng S, Li L, Han X, Sun W, Srinivasan M, Mhaisalkar SG, Cheng F, Yan Q, Chen J, Ramakrishna S (2014) Cobalt sulfide nanosheet/graphene/carbon nanotube nanocomposites as flexible electrodes for hydrogen evolution. Angew Chem Int Ed 53:12594

    CAS  Google Scholar 

  57. Hong YR, Mhin S, Kim KM, Han WS, Choi H, Ali G, Chung KY, Lee HJ, Moon SI, Dutta S, Sun S, Jung YG, Song T, Han HS (2019) Electrochemically activated cobalt nickel sulfide for an efficient oxygen evolution reaction: partial amorphization and phase control. J Mater Chem A 7(8):3592–3602

    CAS  Google Scholar 

  58. Ma X, Zhang W, Deng Y, Zhong C, Hu W, Han X (2018) Phase and composition controlled synthesis of cobalt sulfide hollow nanospheres for electrocatalytic water splitting. Nanoscale 10:4816–4824

    CAS  PubMed  Google Scholar 

  59. Chen P, Xu K, Tao S, Zhou T, Tong Y, Ding H, Zhang H, Chu W, Wu C, Xie Y (2016) Phase-transformation engineering in cobalt diselenide realizing enhanced catalytic activity for hydrogen evolution in an alkaline medium. Adv Mater 28:7527–7532

    CAS  PubMed  Google Scholar 

  60. Kwak IH, Im HS, Jang DM, Kim YW, Park K, Lim YR, Cha EH, Park J (2016) CoSe2 and NiSe2 nanocrystals as superior bifunctional catalysts for electrochemical and photoelectrochemical water splitting. ACS Appl Mater Interfaces 8(8):5327–5334

    CAS  PubMed  Google Scholar 

  61. Dai XF, Qiao JL, Zhou XJ, Shi JJ, Xu P, Zhang L, Zhang JJ (2013) Effects of heat-treatment and pyridine addition on the catalytic activity of carbon-supported cobalt-phthalocyanine for oxygen reduction reaction in alkaline electrolyte. Int J Electrochem Sci 8:3160–3175

    CAS  Google Scholar 

  62. Zou X, Huang X, Goswami A, Silva R, Sathe BR, Mikmekova E, Asefa T (2014) Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values. Angew Chem 126:4461

    Google Scholar 

  63. Zhang X, Liu SW, Zang YP, Liu RR, Liu GQ, Wang GZ, Zhang YX, Zhang HM, Zhao HJ (2016) Co/Co9S8@ S, N-doped porous graphene sheets derived from S, N dual organic ligands assembled Co-MOFs as superior electrocatalysts for full water splitting in alkaline media. Nano Energy 30:93–102

    CAS  Google Scholar 

  64. Zhao YF, Chen SQ, Sun B, Su DW, Huang XD, Liu H, Yan YM, Sun KN, Wang GX (2015) Graphene-Co3O4 nanocomposite as electrocatalyst with high performance for oxygen evolution reaction. Sci Rep 5:7629–7635

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Sultan S, Ha M, Kim DY, Tiwari JN, Myung CW, Meena A, Shin TJ, Chae KH, Kim KS (2019) Superb water splitting activity of the electrocatalyst Fe3Co(PO4)4 designed with computation aid. Nat Commun 10(1):1–9

    CAS  Google Scholar 

  66. Popczun EJ, Read CG, Roske CW, Lewis NS, Schaak RE (2014) Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew Chem Int Ed 53:5427–5430

    CAS  Google Scholar 

  67. Li HM, Qian X, Xu C, Huang SW, Zhu CL, Jiang XC, Shao L, Hou LX (2017) Hierarchical porous Co9S8/nitrogen-doped carbon@ MoS2 polyhedrons as pH universal electrocatalysts for highly efficient hydrogen evolution reaction. ACS Appl Mater Interfaces 9:28394–28405

    CAS  PubMed  Google Scholar 

  68. Jiang J, Liu Q, Zeng C, Ai L (2017) Cobalt/molybdenum carbide@ N-doped carbon as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions. J Mater Chem A 5(32):16929–16935

    CAS  Google Scholar 

  69. Liu P, Rodriguez JA (2005) Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P (001) surface: the importance of ensemble effect. J Am Chem Soc 127:14871–14878

    CAS  PubMed  Google Scholar 

  70. Xing Z, Liu Q, Xing W, Asiri AM, Sun X (2015) Interconnected Co-entrapped, N-doped carbon nanotube film as active hydrogen evolution cathode over the whole pH range. Chemsuschem 8(11):1850–1855

    CAS  PubMed  Google Scholar 

  71. Pu Z, Liu Q, Asiri AM, Sun X (2014) Tungsten phosphide nanorod arrays directly grown on carbon cloth: a highly efficient and stable hydrogen evolution cathode at all pH values. ACS Appl Mater Interfaces 6:21874

    CAS  PubMed  Google Scholar 

  72. Hellstern TR, Benck JD, Kibsgaard J, Hahn C, Jaramillo TF (2016) Stable and active polymer electrolyte membrane electrolyzers utilizing transition metal phosphide hydrogen evolution catalysts. Adv Energy Mater 6(4):1501758

    Google Scholar 

  73. Callejas JF, Read CG, Popczun EJ, McEnaney JM, Schaak RE (2015) Nanostructured Co2P electrocatalyst for the hydrogen evolution reaction and direct comparison with morphologically equivalent CoP. Chem Mater 27(10):3769–3774

    CAS  Google Scholar 

  74. Huang Z, Chen Z, Chen Z, Lv C, Humphrey MG, Zhang C (2014) Cobalt phosphide nanorods as an efficient electrocatalyst for the hydrogen evolution reaction. Nano Energy 9:373–382

    CAS  Google Scholar 

  75. Li K, Zhang F, Wu H, Wang Y, Du J, Lu Y, Wang W, Zhao G, Kang DJ (2018) Facile synthesis of sheet-shaped Co2P grown on carbon cloth as a high-performance electrocatalyst for the hydrogen evolution reaction. J Solid State Electrochem 22(12):3977–3983

    CAS  Google Scholar 

  76. Li YG, Gao Y, Lang ZL, Yu FY, Tan HQ, Yan G, Wang YH, Ma YY (2018) A Co2P/WC nano-heterojunction covered with n-doped carbon as highly efficient electrocatalyst for hydrogen evolution reaction. Chemsuschem 11(6):1082–1091

    PubMed  Google Scholar 

  77. Yan L, Zhang B, Zhu J, Zhao S, Li Y, Zhang B, Jiang J, Ji X, Zhang H, Shen PK (2019) Chestnut-like copper cobalt phosphide catalyst for all-pH hydrogen evolution reaction and alkaline water electrolysis. J Mater Chem A 7(23):14271–14279

    CAS  Google Scholar 

  78. Zhang Y, Gao L, Hensen EJM, Hofmann JP (2018) Evaluating the stability of Co2P electrocatalysts in the hydrogen evolution reaction for both acidic and alkaline electrolytes. ACS Energy Lett 3:1360–1365

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Su J, Yang Y, Xia G, Chen J, Jiang P, Chen Q (2017) Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media. Nat Commun 8(1):1–12

    Google Scholar 

  80. Sankar S, Anilkumar GM, Tamaki T, Yamaguchi T (2018) Cobalt-modified palladium bimetallic catalyst: a multifunctional electrocatalyst with enhanced efficiency and stability toward the oxidation of ethanol and formate in alkaline medium. ACS Appl Mater 1(8):4140–4149

    CAS  Google Scholar 

  81. Ganesan P, Sivanantham A, Shanmugam S (2017) Nanostructured nickel–cobalt–titanium alloy grown on titanium substrate as efficient electrocatalyst for alkaline water electrolysis. ACS Appl Mater Interfaces 9(14):12416–12426

    CAS  PubMed  Google Scholar 

  82. Ali Z, Mehmood M, Ahmed J, Majeed A, Thebo KH (2020) CVD grown defect rich-MWCNTs with anchored CoFe alloy nanoparticles for OER activity. Mater Lett 259:126831

    CAS  Google Scholar 

  83. Kublanovsky VS, Yapontseva YS (2014) Electrocatalytic properties of Co-Mo alloys electrodeposited from a citrate-pyrophosphate electrolyte. Electrocatalysis 5(4):372–378

    CAS  Google Scholar 

  84. Lupi C, Dell’Era A, Pasquali M (2009) Nickel–cobalt electrodeposited alloys for hydrogen evolution in alkaline media. Int J Hydrogen Energy 34(5):2101–2106

    CAS  Google Scholar 

  85. Kim H, Kim J, Han GH, Guo W, Hong S, Park J, Ahn SH (2021) Electrodeposited rhenium-cobalt alloy with high activity for acidic hydrogen evolution reaction. J Ind Eng Chem. https://doi.org/10.1016/j.jiec.2021.01.008

    Article  Google Scholar 

  86. Wang M, Dang Z, Prato M, Petralanda U, Infante I, Shinde DV, Trizio LD, Manna L (2019) Ruthenium-decorated cobalt selenide nanocrystals for hydrogen evolution. ACS Appl Nano Mater 2:5695–5703

    CAS  Google Scholar 

  87. Han W, Li M, Ma Y, Yang J (2020) Cobalt-based metal-organic frameworks and their derivatives for hydrogen evolution reaction. Front Chem 8:1025

    Google Scholar 

  88. Huang C, Yu L, Zhang W, Xiao Q, Zhou J, Zhang Y, An P, Zhang J, Yu Y (2020) N-doped Ni-Mo based sulfides for high-efficiency and stable hydrogen evolution reaction. Appl Catal B 276:119137

    CAS  Google Scholar 

  89. Huang Z, Yuan S, Zhang T, Cai B, Xu B, Lu X, Sun D (2020) Selective selenization of mixed-linker Ni-MOFs: NiSe2@ NC core-shell nano-octahedrons with tunable interfacial electronic structure for hydrogen evolution reaction. Appl Catal B Environ 272:118976

    CAS  Google Scholar 

  90. Yang F, Chen Y, Cheng G, Chen S, Luo W (2017) Ultrathin nitrogendoped carbon coated with CoP for efficient hydrogen evolution. ACS Catal 7:3824–3831

    CAS  Google Scholar 

  91. Wang R, Sun P, Yuan Q, Nie R, Wang X (2019) MOF-derived cobalt-embedded nitrogen-doped mesoporous carbon leaf for efficient hydrogen evolution reaction in both acidic and alkaline media. Int J Hydrogen Energy 44(23):11838–11847

    CAS  Google Scholar 

  92. Ding H, Xu G, Zhang L, Wei B, Hei J, Chen L (2020) A highly effective bifunctional catalyst of cobalt selenide nanoparticles embedded nitrogendoped bamboo-like carbon nanotubes toward hydrogen and oxygen evolution reactions based on metal-organic framework. J Colloid Interface Sci 566:296–303

    CAS  PubMed  Google Scholar 

  93. Zhang R, Tang C, Kong R, Du G, Asiri AM, Chen L, Sun X (2017) Al-Doped CoP nanoarray: a durable water-splitting electrocatalyst with super high activity. Nanoscale 9:4793–4800

    CAS  PubMed  Google Scholar 

  94. Yang L, Qi H, Zhang C, Sun X (2016) An efficient bifunctional electrocatalyst for water splitting based on cobalt phosphide. Nanotechnology 27:1–7

    CAS  Google Scholar 

  95. McCrory CCL, Jung S, Peters JC, Jaramillo TF (2013) Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc 135:16977–16987

    CAS  PubMed  Google Scholar 

  96. Zhang X, Han Y, Huang L, Dong S (2016) 3D graphene aerogels decorated with cobalt phosphide nanoparticles as electrocatalysts for the hydrogen evolution reaction. Chemsuschem 9:3049–3053

    CAS  PubMed  Google Scholar 

  97. Pan Y, Chen Y, Lin Y, Cui P, Sun K, Liu Y, Liu C (2016) Cobalt nickel phosphide nanoparticles decorated carbon nanotubes as advanced hybrid catalysts for hydrogen evolution. J Mater Chem A 4:14675–14686

    CAS  Google Scholar 

  98. Li Q, Xing Z, Asiri AM, Jiang P, Sun X (2014) Cobalt phosphide nanoparticles film growth on carbon cloth: a high-performance cathode for electrochemical hydrogen evolution. Int J Hydrogen Energy 39:16806–16811

    CAS  Google Scholar 

  99. Yang L, Wang K, Du G, Zhu W, Cui L, Zhang C, Sun X, Asiri AM (2016) Cobalt phosphide nanowall arrays supported on carbon cloth: an efficient monolithic non-noble-metal hydrogen evolution catalyst. Nanotechnology 27:475702

    PubMed  Google Scholar 

  100. Liu T, Liu D, Qu F, Wang D, Zhang L, Ge R, Hao S, Ma Y, Du G, Asiri AM, Chen L, Sun X (2017) Enhanced electrocatalysis for energy-efficient hydrogen production over CoP catalyst with nonelectroactive Zn as a promoter. Adv Energy Mater 7(15):1700020

    Google Scholar 

  101. Liu T, Ma X, Liu D, Hao S, Du G, Ma Y, Asiri AM, Sun X, Chen L (2017) Mn doping of CoP nanosheets array: an efficient electrocatalyst for hydrogen evolution reaction with enhanced activity at all pH values. ACS Catal 7:98–102

    CAS  Google Scholar 

  102. Wei M, Yang L, Wang L, Liu T, Liu C, Tang Y, Luo S (2017) In-situ potentiostatic activation to optimize electrodeposited cobalt-phosphide electrocatalyst for highly efficient hydrogen evolution in alkaline media. Chem Phys Lett 681:90–94

    CAS  Google Scholar 

  103. Zhou D, He L, Zhu W, Hou X, Wang K, Du G, Zheng C, Sun X, Asiri AM (2016) Interconnected urchin-like cobalt phosphide microspheres film for highly efficient electrochemical hydrogen evolution in both acidic and basic media. J Mater Chem A 4:10114–10117

    CAS  Google Scholar 

  104. Ye C, Wang MQ, Chen G, Deng YH, Li LJ, Luo HQ, Li NB (2017) One-step CVD synthesis of carbon framework wrapped Co2P as a flexible electrocatalyst for efficient hydrogen evolution. J Mater Chem A 5:7791–7795

    CAS  Google Scholar 

  105. Bai N, Li Q, Mao D, Li D, Dong H (2016) One-step electrodeposition of Co/CoP film on Ni foam for efficient hydrogen evolution in alkaline solution. ACS Appl Mater Interfaces 8:29400–29407

    CAS  PubMed  Google Scholar 

  106. Oh S, Kim H, Kwon Y, Kim M, Cho E, Kwon H (2016) Porous Co–P foam as an efficient bifunctional electrocatalyst for hydrogen and oxygen evolution reactions. J Mater Chem A 4:18272–18277

    CAS  Google Scholar 

  107. Ai L, Niu Z, Jiang J (2017) Mechanistic insight into oxygen evolution electrocatalysis of surface phosphate modified cobalt phosphide nanorod bundles and their superior performance for overall water splitting. Electrochim Acta 242:355–363

    CAS  Google Scholar 

  108. Ma W, Ma R, Wang C, Liang J, Liu X, Zhou K, Sasaki T (2015) A superlattice of alternately stacked Ni–Fe hydroxide nanosheets and graphene for efficient splitting of water. ACS Nano 9(2):1977–1984

    CAS  PubMed  Google Scholar 

  109. Yuan CZ, Jiang YF, Wang Z, Xie X, Yang ZK, Yousaf AB, Xu AW (2016) Cobalt phosphate nanoparticles decorated with nitrogen-doped carbon layers as highly active and stable electrocatalysts for the oxygen evolution reaction. J Mater Chem A 4(21):8155–8160

    CAS  Google Scholar 

  110. Xie L, Zhang R, Cui L, Liu D, Hao S, Ma Y, Du G, Asiri AM, Sun X (2017) High-performance electrolytic oxygen evolution in neutral media catalyzed by a cobalt phosphate nanoarray. Angew Chem Int Ed 56(4):1064–1068

    CAS  Google Scholar 

  111. Kim H, Park J, Park I, Jin K, Jerng SE, Kim SH, Nam KT, Kang K (2015) Coordination tuning of cobalt phosphates towards efficient water oxidation catalyst. Nat Commun 6(8253):1–11

    Google Scholar 

  112. Loni E, Siadati MH, Shokuhfar A, Leybo D, Kuznetsov D (2020) Sodium–cobalt pyrophosphate electrocatalyst for water splitting. J Solid State Chem 290:121510

    CAS  Google Scholar 

  113. Liu M, Qu Z, Yin D, Chen X, Zhang Y, Guo Y, Xiao D (2018) Cobalt−iron pyrophosphate porous nanosheets as highly active electrocatalysts for the oxygen evolution reaction. ChemElectroChem 5:36–43

    CAS  Google Scholar 

  114. Zhang R, Zhang YC, Pan L, Shen GQ, Mahmood N, Ma YH, Shi Y, Jia W, Wang L, Zhang X, Xu W, Zou JJ (2018) Engineering cobalt defects in cobalt oxide for highly efficient electrocatalytic oxygen evolution. ACS Catal 8(5):3803–3811

    Google Scholar 

  115. Liu S, Zhang R, Lv W, Kong F, Wang W (2018) Controlled synthesis of Co3O4 electrocatalysts with different morphologies and their application for oxygen evolution reaction. Int J Electrochem Sci 13:3843–3854

    CAS  Google Scholar 

  116. Rosen J, Hutchings GS, Jiao F (2013) Ordered mesoporous cobalt oxide as highly efficient oxygen evolution catalyst. J Am Chem Soc 135:4516–4521

    CAS  PubMed  Google Scholar 

  117. Gong L, Esther Chng XY, Du Y, Xi S, Siang Yeo B (2018) Enhanced catalysis of the electrochemical oxygen evolution reaction by iron (III) ions adsorbed on amorphous cobalt oxide. ACS Catal 8:807–814

    CAS  Google Scholar 

  118. Liu W, Hou Y, Yang S, Yu C, Lei C, Wu X, He D, Jia Q, Zheng G, Zhang X, Lei L (2018) 3D porous cobalt–iron–phosphorus bifunctional electrocatalyst for the oxygen and hydrogen evolution reactions. ACS Sustain Chem Eng 6(5):6305–6311

    Google Scholar 

  119. Ji X, He Y, Liu J (2019) Concentrated-acid triggered superfast generation of porous amorphous cobalt oxide toward efficient water oxidation catalysis in alkaline solution. Chem Commun 55(12):1797–1800

    CAS  Google Scholar 

  120. Wu Y, Sun R, Cen J (2020) Facile synthesis of cobalt oxide as an efficient electrocatalyst for hydrogen evolution reaction. Front Chem 8:386

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhang X, Chen Y, Chen M, Yu B, Wang B, Wang X, Zhang W, Yang D (2021) MOF derived multi-metal oxides anchored N, P-doped carbon matrix as efficient and durable electrocatalyst for oxygen evolution reaction. J Colloid Interf Sci 581:608–618

    CAS  Google Scholar 

  122. Fu S, Zhu C, Song J, Engelhard MH, Li X, Du D, Lin Y (2016) Highly ordered mesoporous bimetallic phosphides as efficient oxygen evolution electrocatalysts. ACS Energy Lett 1:792–796

    CAS  Google Scholar 

  123. Suzuki N, Horie T, Kitahara G, Murase M, Shinozaki K, Morimoto Y (2016) Novel noble-metal-free electrocatalyst for oxygen evolution reaction in acidic and alkaline media. Electrocatalysis 7(2):115–120

    CAS  Google Scholar 

  124. Al-Sharif MS, Arunachalam P, Abiti T, Amer MS, Al-Shalwi M, Ghanem MA (2020) Mesoporous cobalt phosphate electrocatalyst prepared using liquid crystal template for methanol oxidation reaction in alkaline solution. Arab J Chem 13(1):2873–2882

    CAS  Google Scholar 

  125. Chemelewski WD, Lee HC, Lin JF, Bard AJ, Mullins CB (2014) Amorphous FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting. J Am Chem Soc 136:2843–2850

    CAS  PubMed  Google Scholar 

  126. Feng S, Liu C, Chai Z, Li Q, Xu D (2018) Cobalt-based hydroxide nanoparticles@ N-doping carbonic frameworks core–shell structures as highly efficient bifunctional electrocatalysts for oxygen evolution and oxygen reduction reactions. Nano Res 11(3):1482–1489

    CAS  Google Scholar 

  127. Guzman-Vargas A, Vazquez-Samperio J, Oliver-Tolentino MA, Nava N, Castillo N, Macıas-Hernandez MJ, Reguera E (2018) Influence of cobalt on electrocatalytic water splitting in NiCoFe layered double hydroxides. J Mater Sci 53:4515–4526

    CAS  Google Scholar 

  128. Xin J, Tan H, Liu Z, Zhao L, Xie J, Sang Y, Zhou W, Wang A, Liu H, Wang JJ (2019) Facile synthesis of hierarchical porous Ni x Co1−x SeO3 networks with controllable composition as a new and efficient water oxidation catalyst. Nanoscale 11(7):3268–3274

    CAS  PubMed  Google Scholar 

  129. Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn YA (2011) A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334:1383–1385

    CAS  PubMed  Google Scholar 

  130. Kuznetsov D, Peng J, Giordano L, Rom’an-Leshkov Y, Shao-Horn Y (2020) Bismuth substituted strontium cobalt perovskites for catalyzing oxygen evolution. J Phys Chem C 124:6562–6570

    CAS  Google Scholar 

  131. Kim J, Yin X, Tsao KC, Fang S, Yang H (2014) Ca2Mn2O5 as oxygen-deficient perovskite electrocatalyst for oxygen evolution reaction. J Am Chem Soc 136:14646–14649

    CAS  PubMed  Google Scholar 

  132. Grimaud A, May KJ, Carlton CE, Lee YL, Risch M, Hong WT, Zhou JG, Shao-Horn Y (2013) Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat Commun 4:2439–2745

    PubMed  Google Scholar 

  133. Guo Y, Tong Y, Chen P, Xu K, Zhao J, Lin Y, Chu W, Peng Z, Wu C, Xie Y (2015) Engineering the electronic state of a perovskite electrocatalyst for synergistically enhanced oxygen evolution reaction. Adv Mater 27(39):5989–5994

    CAS  PubMed  Google Scholar 

  134. Miao X, Wu L, Lin Y, Yuan X, Zhao J, Yan W, Zhou S, Shi L (2019) The role of oxygen vacancies in water oxidation for perovskite cobalt oxide electrocatalysts: are more better? Chem Commun 55:1442–1445

    CAS  Google Scholar 

  135. Pramana SS, Cavallaro A, Li C, Handoko AD, Chan AD, Walker RJ, Regoutz A, Herrin JS, Yeo BS, Payne DJ (2018) Crystal structure and surface characteristics of Sr-doped GdBaCo2O6−δ double perovskites: oxygen evolution reaction and conductivity. J Mater Chem A 6:5335–5345

    CAS  Google Scholar 

  136. Zhou S, Miao X, Zhao X, Ma C, Qiu Y, Hu Z, Zhao J, Shi L, Zeng J (2016) Engineering electrocatalytic activity in nanosized perovskite cobaltite through surface spin-state transition. J Nat Commun 7:1–7

    Google Scholar 

  137. Miyahara Y, Miyazaki K, Fukutsuka T, Abe T (2017) Strontium cobalt oxychlorides: enhanced electrocatalysts for oxygen reduction and evolution reactions. Chem Commun 53:2713–2716

    CAS  Google Scholar 

  138. Liu Y, Cheng H, Lyu M, Fan S, Liu Q, Zhang W, Zhi Y, Wang C, Xiao C, Wei S, Ye B, Xie Y (2014) Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. J Am Chem Soc 136:15670–15675

    CAS  PubMed  Google Scholar 

  139. Liang L, Cheng H, Lei F, Han J, Gao S, Wang C, Sun Y, Qamar S, Wei S, Xie Y (2015) Metallic single-unit-cell orthorhombic cobalt diselenide atomic layers: robust water-electrolysis catalysts. Angew Chem Int Ed 54:12004–12008

    CAS  Google Scholar 

  140. Zhao X, Zhang H, Yan Y, Cao J, Li X, Zhou S, Peng Z, Zeng J (2017) Engineering the electrical conductivity of lamellar silver-doped cobalt (II) selenide nanobelts for enhanced oxygen evolution. Angew Chem Int Ed 129(1):334–338

    Google Scholar 

  141. Dong Q, Wang Q, Dai Z, Qiu H, Dong X (2016) MOF-derived Zn-doped CoSe2 as an efficient and stable free-standing catalyst for oxygen evolution reaction. ACS Appl Mater Interfaces 8(40):26902–26907

    CAS  PubMed  Google Scholar 

  142. Gao MR, Xu YF, Jiang J, Zheng YR, Yu SH (2012) Water oxidation electrocatalyzed by an efficient Mn3O4/CoSe2 nanocomposite. J Am Chem Soc 134:2930–2933

    CAS  PubMed  Google Scholar 

  143. Gao MR, Cao X, Gao Q, Xu YF, Zheng YR, Jiang J, Yu SH (2014) Nitrogen-doped graphene supported CoSe2 nanobelt composite catalyst for efficient water oxidation. ACS Nano 8:3970–3978

    CAS  PubMed  Google Scholar 

  144. Cao X, Johnson E, Nath M (2019) Identifying high-efficiency oxygen evolution electrocatalysts from Co–Ni–Cu based selenides through combinatorial electrodeposition. J Mater Chem A 7(16):9877–9889

    CAS  Google Scholar 

  145. Zhu H, Zhang J, Yanzhang R, Du M, Wang Q, Gao G, Wu J, Wu G, Zhang M, Liu B, Yao J, Zhang X (2015) When cubic cobalt sulfide meets layered molybdenum disulfide: a core–shell system toward synergetic electrocatalytic water splitting. Adv Mater 27:4752–4759

    CAS  PubMed  Google Scholar 

  146. Feng X, Jiao Q, Liu T, Li Q, Yin M, Zhao Y, Li H, Feng C, Zhou W (2018) Bi SPR-promoted Z-scheme Bi2MoO6/CdS-diethylenetriamine composite with effectively enhanced visible light photocatalytic hydrogen evolution activity and stability. ACS Sustain Chem Eng 6:1863–1871

    CAS  Google Scholar 

  147. Zhang YQ, Ouyang B, Xu J, Jia GC, Chen S, Rawat RS, Fan HJ (2016) Rapid synthesis of cobalt nitride nanowires: highly efficient and low-cost catalysts for oxygen evolution. Angew Chem Int Ed 55:8670–8674

    CAS  Google Scholar 

  148. Chen PZ, Xu K, Fang ZW, Tong Y, Wu JC, Lu XL, Peng X, Ding H, Wu CZ, Xie Y (2015) Metallic Co4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction. Angew Chem Int Ed 54:14710–14714

    CAS  Google Scholar 

  149. Chen P, Xu K, Tong Y, Li X, Tao S, Fang Z, Chu W, Wu X, Wu C (2016) Cobalt nitrides as a class of metallic electrocatalysts for the oxygen evolution reaction. Inorg Chem Front 3(2):236–242

    CAS  Google Scholar 

  150. Gonzalez-Huerta RG, Ramos-Sanchez G, Balbuena PB (2014) Oxygen evolution in Co-doped RuO2 and IrO2: experimental and theoretical insights to diminish electrolysis overpotential. J Power Sources 268:69–76

    CAS  Google Scholar 

  151. Vigil JA, Lambert TN, Christensen BT (2016) Cobalt phosphide-based nanoparticles as bifunctional electrocatalysts for alkaline water splitting. J Mater Chem A 4(20):7549–7554

    CAS  Google Scholar 

  152. Kim JH, Han S, Jo Y, Bak Y, Lee JS (2018) A precious metal-free solar water splitting cell with a bifunctional cobalt phosphide electrocatalyst and doubly promoted bismuth vanadate photoanode. J Mater Chem A 6(3):1266–1274

    CAS  Google Scholar 

  153. Yuan G, Bai J, Zhang L, Chen X, Ren L (2021) The effect of P vacancies on the activity of cobalt phosphide nanorods as oxygen evolution electrocatalyst in alkali. Appl Catal B Environ 284:119693

    CAS  Google Scholar 

  154. Kim HW, Oh SK, Cho EA, Kwon HS (2018) 3D porous cobalt–iron–phosphorus bifunctional electrocatalyst for the oxygen and hydrogen evolution reactions. ACS Sustain Chem Eng 6(5):6305–6311

    CAS  Google Scholar 

  155. Sun J, Li S, Zhang Q, Guan J (2020) Iron–cobalt–nickel trimetal phosphides as high-performance electrocatalysts for overall water splitting. Sustain Energy Fuels 4(9):4531–4537

    CAS  Google Scholar 

  156. Yang D, Hou W, Lu Y, Zhang W, Chen Y (2021) Cobalt phosphide nanoparticles supported within network of N-doped carbon nanotubes as a multifunctional and scalable electrocatalyst for water splitting. J Energ Chem 52:130–138

    Google Scholar 

  157. Liu Q, Chen Z, Yan Z, Wang Y, Wang E, Wang S, Wang S, Sun G (2018) Crystal-plane-dependent activity of spinel Co3O4 towards water splitting and the oxygen reduction reaction. ChemElectroChem 5(7):1080–1086

    CAS  Google Scholar 

  158. Wang S, Wu J, Yin J, Hu Q, Geng D, Liu LM (2018) Improved electrocatalytic performance in overall water splitting with rational design of hierarchical Co3O4@NiFe layered double hydroxide core–shell nanostructure. ChemElectroChem 5(10):1357–1363

    CAS  Google Scholar 

  159. Chen Z, Xu H, Ha Y, Li X, Liu M, Wu R (2019) Two-dimensional dual carbon-coupled defective nickel quantum dots towards highly efficient overall water splitting. Appl Catal B 250:213–223

    CAS  Google Scholar 

  160. Zhuang H, Xie Y, Tan H, Deng Y, Li Y, Chen G (2018) CoFex–CoFe2O4/N-doped carbon nanocomposite derived from in situ pyrolysis of a single source precursor as a superior bifunctional electrocatalyst for water splitting. Electrochim Acta 262:18–26

    CAS  Google Scholar 

  161. Kargar A, Yavuz S, Kim TK, Liu CH, Kuru C, Rustomji CS, Jin SH, Bandaru PR (2015) Solution-processed CoFe2O[49]4 nanoparticles on 3D carbon fiber papers for durable oxygen evolution reaction. ACS Appl Mater Interfaces 7(32):17851–17856

    CAS  PubMed  Google Scholar 

  162. Deng J, Ren P, Deng D, Yu L, Yang F, Bao X (2014) Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction. Energy Environ Sci 7(6):1919–1923

    CAS  Google Scholar 

  163. Jin HY, Wang J, Su DF, Wei ZZ, Pang ZF, Wang Y (2015) In situ cobalt–cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J Am Chem Soc 137(7):2688–2694

    CAS  PubMed  Google Scholar 

  164. Yang Y, Lun ZY, Xia GL, Zheng FC, He MN, Chen QW (2015) Non-precious alloy encapsulated in nitrogen-doped graphene layers derived from MOFs as an active and durable hydrogen evolution reaction catalyst. Energy Environ Sci 8:3563

    CAS  Google Scholar 

  165. Nath K, Bhunia K, Pradhan D, Biradha K (2019) MOF-templated cobalt nanoparticles embedded in nitrogen-doped porous carbon: a bifunctional electrocatalyst for overall water splitting. Nanoscale Adv 1(6):2293–2302

    CAS  Google Scholar 

  166. Xia L, Song H, Li X, Zhang X, Gao B, Zheng Y, Huo K, Chu PK (2020) Hierarchical 0D–2D Co/Mo selenides as superior bifunctional electrocatalysts for overall water splitting. Front Chem 8:382

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Gu W, Hu L, Zhu X, Shang C, Li J, Wang E (2018) Rapid synthesis of Co3O4 nanosheet arrays on Ni foam by in situ electrochemical oxidization of air-plasma engraved Co(OH)2 for efficient oxygen evolution. Chem Commun 54:12698–12701

    CAS  Google Scholar 

  168. Ahn IK, Joo W, Lee JH, Kim HG, Lee SY, Jung Y, Kim JY, Lee GB, Kim M, Joo YC (2019) Metal-organic framework-driven porous cobalt disulfide nanoparticles fabricated by gaseous sulfurization as bifunctional electrocatalysts for overall water splitting. Sci Rep 9(19539):1–10

    Google Scholar 

  169. Deng WF, Jiang HM, Chen C, Yang L, Zhang YM, Peng SQ, Wang SQ, Tan YM, Ma M, Xie QJ (2016) Phase-selective synthesis of self-supported RuP films for efficient hydrogen evolution electrocatalysis in alkaline media. ACS Appl Mater Interfaces 8:13341–13347

    CAS  PubMed  Google Scholar 

  170. Zhang LL, Liu W, Dou YB, Du Z, Shao MH (2016) The role of transition metal and nitrogen in metal–N–C composites for hydrogen evolution reaction at universal pHs. J Phys Chem C 120:29047–29053

    CAS  Google Scholar 

  171. Feng T, Yu G, Tao S, Zhu S, Ku R, Zhang R, Zeng Q, Yang M, Chen Y, Chen W, Yang B (2020) A highly efficient overall water splitting ruthenium-cobalt alloy electrocatalyst across a wide pH range via electronic coupling with carbon dots. J Mater Chem A 8(19):9638–9645

    CAS  Google Scholar 

  172. Yaseen W, Ullah N, Xie M, Wei W, Xu Y, Zahid M, Oluigbo CJ, Yusuf BA, Xie J (2021) Cobalt-Iron nanoparticles encapsulated in mesoporous carbon nanosheets: A one-pot synthesis of highly stable electrocatalysts for overall water splitting. Int J Hydrogen Energy 46(7):5234–5249

    CAS  Google Scholar 

  173. Lin Y, Zhang D, Gong Y (2020) Ultralow ruthenium loading Cobalt-molybdenum binary alloy as highly efficient and super-stable electrocatalyst for water splitting. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2020.148518

    Article  Google Scholar 

  174. Liu M, Li J (2016) Cobalt phosphide hollow polyhedron as efficient bifunctional electrocatalysts for the evolution reaction of hydrogen and oxygen. ACS Appl Mater Interfaces 8:2158–2165

    CAS  PubMed  Google Scholar 

  175. Songa M, Hea Y, Zhanga M, Zhenga X, Wanga Y, Zhanga J, Hana X, Zhong C, Hu W, Deng Y (2018) Controllable synthesis of Co2P nanorods as high-efficiency bifunctional electrocatalyst for overall water splitting. J Power Sources 402:345–352

    Google Scholar 

  176. Zhang C, Bhoyate S, Kahol PK, Siam K, Poudel TP, Mishra SR, Gupta RK (2018) Highly efficient and durable electrocatalyst based on nanowires of cobalt sulfide for overall water splitting. ChemNanoMat 4(12):1240–1246

    CAS  Google Scholar 

  177. Huang Z, Yang Z, Hussain Z, Chen B, Jia Q, Zhu Y, Xia Y (2020) Polyoxometallates@ zeolitic-imidazolate-framework derived bimetallic tungsten-cobalt sulfide/porous carbon nanocomposites as efficient bifunctional electrocatalysts for hydrogen and oxygen evolution. Electrochim Acta 330:135335

    CAS  Google Scholar 

  178. Zhou W, Lu J, Zhou K, Yang L, Ke Y, Tang Z, Chen S (2016) CoSe2 nanoparticles embedded defective carbon nanotubes derived from MOFs as efficient electrocatalyst for hydrogen evolution reaction. Nano Energy 28:143–150

    CAS  Google Scholar 

  179. Wu Z, Li J, Zou Z, Wang X (2018) Folded nanosheet-like Co0.85Se array for overall water splitting. J Solid State Electrochem 22:1785–1794

    CAS  Google Scholar 

  180. Zhang G, Wang B, Bi J, Fang D, Yang S (2019) Constructing ultrathin CoP nanomeshes by Er-doping for highly efficient bifunctional electrocatalysts for overall water splitting. J Mater Chem A 7:5769–5778

    CAS  Google Scholar 

  181. Du Y, Qu H, Liu Y, Han Y, Wang L, Dong B (2019) Bimetallic CoFeP hollow microspheres as highly efficient bifunctional electrocatalysts for overall water splitting in alkaline media. Appl Surf Sci 465:816–823

    CAS  Google Scholar 

  182. Lin Y, Pan Y, Liu S, Sun K, Cheng Y, Liu M, Wang Z, Li X, Zhang J (2019) Construction of multi-dimensional core/shell Ni/NiCoP nano-heterojunction for efficient electrocatalytic water splitting. Appl Catal B 259:118039

    CAS  Google Scholar 

  183. Yao M, Hu H, Sun B, Wang N, Hu W, Komarneni S (2019) Self-supportive mesoporous Ni/Co/Fe phosphosulfide nanorods derived from novel hydrothermal electrodeposition as a highly efficient electrocatalyst for overall water splitting. Small 15:1905201

    CAS  Google Scholar 

  184. Lv CN, Zhang L, Huang XH, Zhu YX, Zhang X, Hu JS, Lu SY (2019) Double functionalization of N-doped carbon carved hollow nanocubes with mixed metal phosphides as efficient bifunctional catalysts for electrochemical overall water splitting. Nano Energy 65:103995

    CAS  Google Scholar 

  185. Li W, Chen Y, Yu B, Hu Y, Wang X, Yang D (2019) 3D hollow Co–Fe–P nanoframes immobilized on N, P-doped CNT as an efficient electrocatalyst for overall water splitting. Nanoscale 11:17031–17040

    CAS  PubMed  Google Scholar 

  186. Li J, Wei G, Zhu Y, Xi Y, Pan X, Yuan J, Zatovsky IV, Wei H (2017) Hierarchical NiCoP nanocone arrays supported on Ni foam as an efficient and stable bifunctional electrocatalyst for overall water splitting. J Mater Chem A 5:14828–14837

    CAS  Google Scholar 

  187. Liu PF, Yang S, Zhang B, Yang HG (2016) Defect-rich ultrathin cobalt–iron layered double hydroxide for electrochemical overall water splitting. ACS Appl Mater Interfaces 8:34474

    CAS  PubMed  Google Scholar 

  188. Dai Z, Geng H, Wang J, Luo Y, Li B, Zong Y, Yang J, Guo Y, Zheng Y, Wang X (2017) Hexagonal-phase cobalt monophosphosulfide for highly efficient overall water splitting. ACS Nano 11:11031

    CAS  PubMed  Google Scholar 

  189. Lian J, Wu Y, Zhang H, Gu S, Zeng Z, Ye X (2018) One-step synthesis of amorphous Ni–Fe–P alloy as bifunctional electrocatalyst for overall water splitting in alkaline medium. Int J Hydrogen Energy 43:12929–12938

    CAS  Google Scholar 

  190. Jiao L, Zhou YX, Jiang HL (2016) Metal–organic framework-based CoP/reduced graphene oxide: high-performance bifunctional electrocatalyst for overall water splitting. Chem Sci 7:1690–1695

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Liu S, Jiang Y, Yang M, Zhang M, Guo Q, Shen W, He R, Li M (2019) Highly conductive and metallic cobalt–nickel selenide nanorods supported on Ni foam as an efficient electrocatalyst for alkaline water splitting. Nanoscale 11:7959–7966

    CAS  PubMed  Google Scholar 

  192. Cheng Y, Liao F, Shen W, Liu L, Jiang B, Li Y, Shao M (2017) Carbon cloth supported cobalt phosphide as multifunctional catalysts for efficient overall water splitting and zinc–air batteries. Nanoscale 9:18977

    CAS  PubMed  Google Scholar 

  193. Jiang N, You B, Sheng M, Sun Y (2015) Electrodeposited cobalt-phosphorous-derived films as competent bifunctional catalysts for overall water splitting. Angew Chem 127:6349–6352

    Google Scholar 

  194. Yang Y, Yao H, Yu Z, Islam SM, He H, Yuan M, Yue Y, Xu K, Hao W, Sun G, Li H, Ma S, Zapol P, Kanatzidis MG (2019) Hierarchical nanoassembly of MoS2/Co9S8/Ni3S2/Ni as a highly efficient electrocatalyst for overall water splitting in a wide pH range. J Am Chem Soc 141:10417–10430

    CAS  PubMed  Google Scholar 

  195. Jin H, Wang J, Su D, Wei Z, Pang Z, Wang Y (2015) In situ cobalt–cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J Am Chem Soc 137:2688–2694

    CAS  PubMed  Google Scholar 

  196. Yang WQ, Hua YX, Zhang QB, Lei H, Xu CY (2018) Electrochemical fabrication of 3D quasi-amorphous pompon-like Co-O and Co-Se hybrid films from choline chloride/urea deep eutectic solvent for efficient overall water splitting. Electrochim Acta 273:71–79

    CAS  Google Scholar 

  197. Zhai M, Wang F, Du H (2017) Transition-metal phosphide–carbon nanosheet composites derived from two-dimensional metal-organic frameworks for highly efficient electrocatalytic water-splitting. ACS Appl Mater Inter 9:40171–40179

    CAS  Google Scholar 

  198. Yan J, Chen L, Liang X (2019) Co9S8 nanowires@ NiCo LDH nanosheets arrays on nickel foams towards efficient overall water splitting. Sci Bull 64:158–165

    CAS  Google Scholar 

  199. Li J, Kong X, Jiang M, Lei X (2018) Hierarchically structured CoN/Cu3N nanotube array supported on copper foam as an efficient bifunctional electrocatalyst for overall water splitting. Inorg Chem Front 5:2906–2913

    CAS  Google Scholar 

  200. Mahmood N, Yao Y, Zhang JW, Pan L, Zhang X, Zou JJ (2018) for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions. Adv Sci 5(1700464):1–23

    Google Scholar 

  201. Qu G, Wu T, Yu Y, Tang Z, Yue Q (2019) Rational design of phosphorus-doped cobalt sulfides electrocatalysts for hydrogen evolution. Nano Res 12:2960–2965

    CAS  Google Scholar 

  202. Qiao M, Wang Y, Mamat X, Chen A, Zou G, Li L, Hu G, Zhang S, Hu X, Voiry D (2020) Rational design of hierarchical, porous, co-supported, N-doped carbon architectures as electrocatalyst for oxygen reduction. Chemsuschem 13(4):741–748

    CAS  PubMed  Google Scholar 

  203. Chen W, Zhang Y, Chen G, Huang R, Zhou Y, Wu Y, Hu Y, Ostrikov K (2019) Mesoporous cobalt–iron–organic frameworks: a plasma-enhanced oxygen evolution electrocatalyst. J Mater Chem A 7(7):3090–3100

    CAS  Google Scholar 

  204. Pramanik M, Tominaka S, Wang ZL, Takei T, Yamauchi Y (2017) Mesoporous semimetallic conductors: structural and electronic properties of cobalt phosphide systems. Angew Chem Int Ed 56(43):13508–13512

    CAS  Google Scholar 

  205. Zhang X, Chen Y, Zhang W, Yang D (2020) Coral-like hierarchical architecture self-assembled by cobalt hexacyanoferrate nanocrystals and N-doped carbon nanoplatelets as efficient electrocatalyst for oxygen evolution reaction. J Colloid Interf Sci 558:190–199

    Google Scholar 

  206. Wang J, Wang J, Zhang M, Li S, Liu R, Li Z (2020) Metal-organic frameworks-derived hollow-structured iron-cobalt bimetallic phosphide electrocatalysts for efficient oxygen evolution reaction. J Alloys Compd 821:153463

    CAS  Google Scholar 

  207. Guo D, Kang H, Wei P, Yang Y, Hao Z, Zhang Q, Liu L (2020) A high-performance bimetallic cobalt iron oxide catalyst for the oxygen evolution reaction. Cryst Eng Comm 22(25):4317–4323

    CAS  Google Scholar 

  208. Sankar SS, Rathishkumar A, Geetha K, Kundu S (2021) Electrospinning as a tool in fabricating hydrated porous cobalt phosphate fibrous network as high rate OER electrocatalysts in alkaline and neutral media. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2020.12.131

    Article  Google Scholar 

  209. Cao B, Hu M, Cheng Y, Jing P, Liu B, Zhou B, Wang X, Gao R, Sun X, Du Y, Zhang J (2021) Tailoring the d-band center of N-doped carbon nanotube arrays with Co4N nanoparticles and single-atom Co for a superior hydrogen evolution reaction. NPG Asia Mater 13(1):1–14

    Google Scholar 

  210. Zhang R, Zhang YC, Pan L, Shen GQ, Mahmood N, Ma YH, Shi Y, Jia W, Wang L, Zhang X, Xu W, Zou JJ (2019) Iron doped cobalt phosphide ultrathin nanosheets on nickel foam for overall water splitting. J Mater Chem A 7:20658–20666

    Google Scholar 

  211. Pan Y, Sun K, Lin Y, Cao X, Cheng Y, Liu S, Zeng L, Cheong WC, Zhao D, Wu K, Liu Z (2019) Electronic structure and d-band center control engineering over M-doped CoP (M = Ni, Mn, Fe) hollow polyhedron frames for boosting hydrogen production. Nano Energy 56:411–419

    CAS  Google Scholar 

  212. Wang X, Zheng Y, Sheng W, Xu ZJ, Jaroniec M, Qiao S-Z (2020) Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions. Mater Today 36:125–138

    CAS  Google Scholar 

  213. Jiang K, Liu B, Luo M, Ning S, Peng M, Zhao Y, Lu YR, Chan TS, de Groot FM, Tan Y (2019) Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction. Nat Commun 10(1):1–9

    Google Scholar 

  214. Munde AV, Mulik BB, Dighole RP, Sathe BR (2020) Cobalt oxide nanoparticle-decorated reduced graphene oxide (Co3O4–rGO): active and sustainable nanoelectrodes for water oxidation reaction. New J Chem 44(36):15776–15784

    CAS  Google Scholar 

  215. Zhang L, Zhu S, Dong S, Woo NJ, Xu Z, Huang J, Kim JK, Shao M (2018) Co nanoparticles encapsulated in porous N-doped carbon nanofibers as an efficient electrocatalyst for hydrogen evolution reaction. J Electrochem Soc 165(15):3271–3275

    Google Scholar 

  216. Wang W, Luo J, Chen S (2017) Carbon oxidation reactions could misguide the evaluation of carbon black-based oxygen-evolution electrocatalysts. Chem Comm 53(84):11556–11559

    CAS  PubMed  Google Scholar 

  217. Chen J, Hu J, Waldecker JR (2015) A comprehensive model for carbon corrosion during fuel cell start-up. J Electrochem Soc 162(8):F878

    CAS  Google Scholar 

  218. Ferreira-Aparicio P, Chaparro AM, Folgado MA, Conde JJ, Brightman E, Hinds G (2017) Degradation study by start-up/shut-down cycling of superhydrophobic electrosprayed catalyst layers using a localized reference electrode technique. ACS Appl Mater Interfaces 9(12):10626–10636

    CAS  PubMed  Google Scholar 

  219. Ullah N, Xie M, Linlin C, Yaseen W, Zhao W, Yang S, Xu Y, Xie J (2021) Novel 3D graphene ornamented with CoO nanoparticles as an efficient bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Mater Chem Phys 537:124237

    Google Scholar 

  220. Lv X, Yin S (2021) CoP-embedded nitrogen and phosphorus co-doped mesoporous carbon nanotube for efficient hydrogen evolution. Appl Surf Sci 537:147834

    CAS  Google Scholar 

  221. Jadhav AR, Bandal HA, Tamboli AH, Kim H (2017) Environment friendly hydrothermal synthesis of carbon–Co3O4 nanorods composite as an efficient catalyst for oxygen evolution reaction. J Energy Chem 26(4):695–702

    Google Scholar 

  222. Jia Y, Wang Y, Zhang G, Zhang C, Sun K, Xiong X, Liu J, Sun X (2020) Pyrolysis-free formamide-derived N-doped carbon supporting atomically dispersed cobalt as high-performance bifunctional oxygen electrocatalyst. J Energy Chem 49:283–290

    Google Scholar 

Download references

Acknowledgements

This work was non-financially supported by K. N. Toosi University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Loni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loni, E., Shokuhfar, A. & Siadati, M.H. Cobalt-Based Electrocatalysts for Water Splitting: An Overview. Catal Surv Asia 25, 114–147 (2021). https://doi.org/10.1007/s10563-021-09329-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-021-09329-5

Keywords

Navigation