Skip to main content
Log in

Unraveling the Intrinsic Reasons Promoting the Reactivity of ZnAl2O4 Spinel by Fe and Co for CO Oxidation

  • Original Article
  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

To develop active and stable catalysts for CO oxidation at relatively higher temperature region for exhaust treatment, ZnAl2O4 spinel promoted by Fe and Co have been fabricated and characterized by different means. While Fe doping improves only slightly the activity, Co doping increases the activity remarkably. XRD and Raman results have proved that ZnAl2O4 spinel is the major phase for all the samples. By Fe doping, a new ZnFe2O4 spinel compound is formed. By Co doping, two new ZnCo2O4 and CoAl2O4 spinels are generated, which can provide both surface Co3+ and Co2+ sites for effective CO adsorption. XPS and EPR have testified that surface superoxide O2- anion is the major active oxygen sites for the reaction. It is disclosed that the concerted interaction between surface O2- species and CO adsorption sites determines the activity. Compared with the un-modified Zn-Al spinel sample, Fe doping improves slightly the amount of active oxygen species, but decreases the amount of CO adsorption sites. However, Co doping increases the amount of both kinds of sites evidently due to the formation of ZnCo2O4 and CoAl2O4 spinels. As a consequence, Zn-Co-Al exhibits the optimal activity in all the catalysts.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lamb AB, Bray WC, Frazer JCW (1920) J Ind Eng Chem 12:213–221

    Google Scholar 

  2. Zaki MI, Hasan MA, Pasupulety L (2000) Appl Catal A 198:247–259

    CAS  Google Scholar 

  3. Zhu H, Qin ZF, Shan WJ, Shen WJ, Wang JG (2004) J Catal 225:267–277

    CAS  Google Scholar 

  4. Jin MS, Li ZH, Piao WX, Chen J, Jin LY, Kim JM (2020) Catal. Surv  Asia 21:45–52

    Google Scholar 

  5. Yoon C, Cocke DL (1988) J Catal 113:267–280

    CAS  Google Scholar 

  6. Liu Y, Guo Y, Peng H, Xu X, Wu Y, Peng C, Zhang N, Wang X (2016) Appl Catal A 525:204–214

    CAS  Google Scholar 

  7. Liu X, Liu MH, Luo YC, Mou CY, Lin SD, Cheng H, Chen JM, Lee JF, Lin TS (2012) J Am Chem Soc 134:10251–10258

    CAS  PubMed  Google Scholar 

  8. Carabineiro SAC, Machado BF, Bacsa RR, Serp P, Dražić G, Faria JL, Figueiredo JL (2010) J Catal 273:191–198

    CAS  Google Scholar 

  9. Kung HH, Kung MC, Costello CK (2003) J Catal 216:425–432

    CAS  Google Scholar 

  10. Zhang P, Yu H, Li J, Zhao H, Zhu B, Huang W, Zhang S (2016) RSC Adv 6:15304–15312

    CAS  Google Scholar 

  11. Gao F, Wang Y, Cai Y, Goodman DW (2008) J Phys Chem C 113:174–181

    Google Scholar 

  12. Yu J, Zhao D, Xu X, Wang X, Zhang N (2012) ChemCatChem 4:1122–1132

    CAS  Google Scholar 

  13. Over H, Kim YD, Seitsonen AP, Wendt S, Lundgren E, Schmid M, Varga P, Morgante A, Ertl G (2000) Science 287:1474–1476

    CAS  PubMed  Google Scholar 

  14. Bunluesin T, Putna ES, Gorte RJ (1996) Catal Lett 41:1–5

    CAS  Google Scholar 

  15. Pirogova GN, Panich NM, Korosteleva RI, Tyurkin YV, Voronin YV (1994) Russ Chem Bull 43:1634–1636

    Google Scholar 

  16. Faure B, Alphonse P (2016) Appl Catal B 180:715–725

    CAS  Google Scholar 

  17. Tian ZY, Bahlawane N, Vannier V, Kohse-Höinghaus K (2013) Proc Combust Inst 34:2261–2268

    CAS  Google Scholar 

  18. Bastianello M, Gross S, Elm MT (2019) RSC Adv 9:33282–33289

    CAS  Google Scholar 

  19. Guo J, Lou H, Zhao H, Wang X, Zheng X (2004) Mater Lett 58:1920–1923

    CAS  Google Scholar 

  20. Mobini S, Meshkani F, Rezaei M (2017) J Environ Chem Eng 5:4906–4916

    CAS  Google Scholar 

  21. Zhao M, Deng J, Liu J, Li Y, Liu J, Duan Z, Xiong J, Zhao Z, Wei Y, Song W, Sun Y (2019) ACS Catal 9:7548–7567

    CAS  Google Scholar 

  22. Taniguchi M, Uenishi M, Tanaka H, Mizuno N (2014) Chem Lett 43:363–365

    CAS  Google Scholar 

  23. Morozov IV, Lyubushkin RA, Fedorova AA, Petrov MN, Burdeinaya TN, Trets’yakov VF (2006) Kinet Catal 47:35–39

    CAS  Google Scholar 

  24. Mokhtar M, Basahel SN, Al-Angary YO (2010) J Alloys Compd 493:376–384

    CAS  Google Scholar 

  25. Laberty C, Marquez-Alvarez C, Drouet C, Alphonse P, Mirodatos C (2001) J Catal 198:266–276

    CAS  Google Scholar 

  26. Lv M, Guo X, Wang Z, Wang L, Li Q, Zhang Z (2016) RSC Adv 6:27052–27059

    CAS  Google Scholar 

  27. Einaga H, Kiya A, Yoshioka S, Teraoka Y (2014) Catal Sci Technol 4:3713–3722

    CAS  Google Scholar 

  28. Mountapmbeme Kouotou P, Vieker H, Tian ZY, Tchoua Ngamou PH, El Kasmi A, Beyer A, Gölzhäuser A, Kohse-Höinghaus K (2014) Catal Sci Technol 4:3359–3367

    CAS  Google Scholar 

  29. Sun Y, Xu J, Xu X, Fang X, Guo Y, Liu R, Zhong W, Wang X (2020) Ind Eng Chem Res 59:9382–9392

    CAS  Google Scholar 

  30. Shen SC, Hidajat K, Yu LE, Kawi S (2004) Adv Mater 16:541–545

    CAS  Google Scholar 

  31. Mohanty P, Mohapatro S, Mahapatra R, Mishra DK (2020). Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.03.508

    Article  Google Scholar 

  32. Lin Y, Sun J, Wang D, Zhang CH, Wang Z, Li XB (2020) Catal Lett 150:3206–3213

    CAS  Google Scholar 

  33. Li SJ, Lin Y, Wang D, Zhang CH, Wang Z, Li XB (2021) Chemosphere 263:127870

    CAS  PubMed  Google Scholar 

  34. D’Ippolito V, Andreozzi GB, Bosi F, Hålenius U, Mantovani L, Bersani D, Fregola RA (2018) Mineral Mag 77:2941–2953

    Google Scholar 

  35. Rahman MM, Khan SB, Faisal M, Asiri AM, Alamry KA (2012) Sens Actuators B 171–172:932–937

    Google Scholar 

  36. Barroso MN, Gomez MF, Arrúa LA, Abello MC (2010) Chem Eng J 158:225–232

    CAS  Google Scholar 

  37. Moran-Lazaro JP, Lopez-Urias F, Munoz-Sandoval E, Blanco-Alonso O, Sanchez-Tizapa M, Carreon-Alvarez A, Guillen-Bonilla H, Olvera-Amador ML, Guillen-Bonilla A, Rodriguez-Betancourtt VM (2016) Sensors (Basel) 16:2162–2176

    Google Scholar 

  38. Zha W, Zhou Z, Zhao D, Feng S (2015) J Sol-Gel Sci Technol 78:144–150

    Google Scholar 

  39. Yin CC, Liu YN, Xia QN, Kang SF, Li X, Wang YG, Cui LF (2019) J Colloid Interface Sci 553:427–435

    CAS  PubMed  Google Scholar 

  40. Grillo F, Natile MM, Glisenti A (2004) Appl Catal B 48:267–274

    CAS  Google Scholar 

  41. Feng M, Dou Z, Xiufeng X (2013) J Fuel Chem Technol 41:729–734

    CAS  Google Scholar 

  42. Xu X, Han H, Liu J, Liu W, Li W, Wang X (2014) J Rare Earth 32:159–169

    CAS  Google Scholar 

  43. Han J-k, Jia L-t, Hou B, Li D-b, Liu Y, Liu Y-c (2015) J Fuel Chem Technol 43:846–851

    CAS  Google Scholar 

  44. Xu J, Zhang Y, Xu X, Fang X, Xi R, Liu Y, Zheng R, Wang X (2019) ACS Catal 9:4030–4045

    CAS  Google Scholar 

  45. Li X, Lu G, Li S (1996) J Alloys Compd 235:150–155

    CAS  Google Scholar 

  46. Yang K, Zhang Y, Meng C, Cao F, Chen X, Fu X, Dai W, Yu C (2017) Appl Surf Sci 391:635–644

    CAS  Google Scholar 

  47. Duan X, Yuan D, Yu F (2011) Inorg Chem 50:5460–5467

    CAS  PubMed  Google Scholar 

  48. Shu R, Zhang G, Wang X, Gao X, Wang M, Gan Y, Shi J, He J (2018) Chem Eng J 337:242–255

    CAS  Google Scholar 

  49. Behera A, Mansingh S, Das KK, Parida K (2019) J Colloid Interface Sci 544:96–111

    CAS  PubMed  Google Scholar 

  50. Taheri Najafabadi A, Khodadadi AA, Parnian MJ, Mortazavi Y (2016) Appl Catal A 511:31–46

    CAS  Google Scholar 

  51. Wachs IE, Routray K (2012) ACS Catal 2:1235–1246

    CAS  Google Scholar 

  52. Ferreira VJ, Tavares P, Figueiredo JL, Faria JL (2012) Ind Eng Chem Res 51:10535–10541

    CAS  Google Scholar 

  53. Stoch J, Gablankowska-Kukucz J (1991) Surf Interface Anal 17:165–167

    CAS  Google Scholar 

  54. Doornkamp C, Ponec V (2000) J Mol Catal A 162:19–32

    CAS  Google Scholar 

  55. Busca G, Guidetti R, Lorenzelli V (1990) J Chem Soc Faraday Trans 86:989–994

    CAS  Google Scholar 

  56. Bailie JE, Rochester CH, Hutchings GJ (1997) J Chem Soc Faraday Trans 93:2331–2336

    CAS  Google Scholar 

  57. Wang L, Yi X, Weng W, Wan H (2008) Catal Toady 131:135–139

    CAS  Google Scholar 

  58. Bai ZQ, Zheng YJ, Han WW, Ji Y, Yan TL, Tang Y, Chen G, Zhang ZP (2018) Crystengcomm 20:4090–4098

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of China (21962009, 21567016, 21666020), the Natural Science Foundation of Jiangxi Province (20181ACB20005), Key Laboratory Foundation of Jiangxi Province for Environment and Energy Catalysis (20181BCD40004), which are greatly acknowledged by the authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junwei Xu or Xiang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 217 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Xu, J., Xi, R. et al. Unraveling the Intrinsic Reasons Promoting the Reactivity of ZnAl2O4 Spinel by Fe and Co for CO Oxidation. Catal Surv Asia 25, 180–191 (2021). https://doi.org/10.1007/s10563-021-09324-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-021-09324-w

Keywords

Navigation