Skip to main content
Log in

Morphology-Controlled Synthesis of TiO2 with Different Structural Units and Applied for the Selective Catalytic Reduction of NOx with NH3

  • Original Article
  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

In our study, a series of sphere morphology of TiO2 supports owned the different structural units, including the flower-like sphere with thin-long nanorods (TiO2-75), nanosheets-assembled sphere with broad-short nanorods (TiO2-50) and particle-assembled sphere (TiO2-30) which were synthesized with adjusting volume ratio of Titanium (IV) isopropoxide/acetic acid by solvothermal method. Subsequently, CeO2–WO3/TiO2 catalysts were prepared by simple impregnation methods and applied for selective catalytic reduction of NOx with NH3. Notably, the TiO2 sphere morphology gradually varied from flower-like sphere to particle-assembled sphere with the increase volume ratio of Titanium (IV) isopropoxide/acetic acid. Meanwhile, the microscopic structural units of morphology for TiO2 support could be regularly controlled by adjusting volume ratio of Titanium (IV) isopropoxide/acetic acid. Among, the optimal flower-like sphere TiO2 morphology with thin-long nanorods had the best catalytic performance when the volume ratio was 1:75, which could be attributed to bigger pore structure and higher specific surface area supplying enough dispersion for active ingredient, adsorption of reactants and exposure of more active sites. Meanwhile, it could be found that the redox ability and abundant surface acidity of the CeO2–WO3/TiO2 catalyst played a critical role in catalytic activity via a series of characterizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kang L, Han L, He J, Li H, Yan T, Chen G, Zhang J, Shi L, Zhang D (2019) Environ Sci Technol 53(2):938–945

    CAS  PubMed  Google Scholar 

  2. Han L, Gao M, Hasegawa JY, Li S, Shen Y, Li H, Shi L, Zhang D (2019) Environ Sci Technol 53(11):6462–6473

    CAS  PubMed  Google Scholar 

  3. Han L, Gao M, Feng C, Shi L, Zhang D (2019) Environ Sci Technol 53(10):5946–5956

    CAS  PubMed  Google Scholar 

  4. Han L, Cai S, Gao M, Hasegawa JY, Wang P, Zhang J, Shi L, Zhang D (2019) Chem Rev 119(19):10916–10976

    CAS  PubMed  Google Scholar 

  5. Khan MN, Han L, Wang P, He J, Yang B, Yan T, Shi L, Zhang D (2020) Chem Eng J 397:125535

    CAS  Google Scholar 

  6. Yan L, Wang P, Impeng S, Liu X, Han L, Yan T, Zhang D (2020) Environ Sci Technol 54:7697–7705

    CAS  PubMed  Google Scholar 

  7. Wang P, Yan L, Gu Y, Kuboon S, Li H, Yan T, Shi L, Zhang D (2020) Environ Sci Technol 54:6396–6405

    CAS  PubMed  Google Scholar 

  8. Khan MN, Han L, Wang P, Zhang D (2020) iScience 23:101173

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Xin Y, Zhang N, Li Q, Cao X, Zheng L, Zeng Y, Anderson JA, Zhang Z (2018) ACS Catal 8:1399

    CAS  Google Scholar 

  10. Xin Y, Zhang N, Li Q, Cao X, Zheng L, Zeng Y, Anderson JA, Zhang Z (2018) Appl Catal B: Environ 229:81–87

    CAS  Google Scholar 

  11. Li Q, Gu H, Li P, Zhou Y, Liu Y, Qi Z, Xin Y, Zhang Z (2014) Chin J Catal 35:1289–1298

    CAS  Google Scholar 

  12. Li P, Xin Y, Li Q, Wang Z, Zheng L, Zhang Z (2012) Environ Sci Technol 46:9600–9605

    CAS  PubMed  Google Scholar 

  13. Shan W, Liu F, He H, Shi X, Zhang C (2012) Appl Catal B: Environ 115–116:100–106

    Google Scholar 

  14. Yan L, Liu Y, Hu H, Li H, Shi L, Zhang D (2016) ChemCatChem 8:2267–2278

    CAS  Google Scholar 

  15. Zhang G, Han W, Zhao H, Zong L, Tang Z (2018) Appl Catal B: Environ 226:117–126

    CAS  Google Scholar 

  16. Zhao K, Han W, Lu G, Lu J, Tang Z, Zhen X (2016) Appl Surf Sci 379:316–322

    CAS  Google Scholar 

  17. Huang H, Shan W, Yang S, Zhang J (2014) Catal Sci Technol 4:3611–3614

    CAS  Google Scholar 

  18. Geng Y, Shan W, Xiong S, Liao Y, Yang S, Liu F (2016) Catal Sci Technol 6:3149–3155

    CAS  Google Scholar 

  19. Peng Y, Liu C, Zhang X, Li J (2013) Appl Catal B: Environ 140–141:276–282

    Google Scholar 

  20. Cao L, Wu X, Chen Z, Ma Y, Ma Z, Ran R, Si Z, Weng D, Wang B (2019) Appl Catal A: Gen 580:121–130

    CAS  Google Scholar 

  21. Xu W, Yu Y, Zhang C, He H (2008) Catal Commun 9:1453–1457

    CAS  Google Scholar 

  22. Chen L, Li J, Ge M, Zhu R (2010) Catal Today 153:77–83

    CAS  Google Scholar 

  23. Kwon DW, Nam KB, Hong SC (2015) Appl Catal A: Gen 497:160–166

    CAS  Google Scholar 

  24. Kwon DW, Hong SC (2015) Appl Surf Sci 356:181–190

    CAS  Google Scholar 

  25. Li C, Shen M, Wang J, Wang J, Zhai Y (2018) Ind Eng Chem Res 57:8424–8435

    CAS  Google Scholar 

  26. Salazar M, Becker R, Grünert W (2018) Mol Catal 451:66–75

    CAS  Google Scholar 

  27. Chen L, Weng D, Si Z, Wu X (2012) Prog Nat Sci: Mater Int 22(4):265–272

    Google Scholar 

  28. Wu Z, Zeng Y, Song F, Zhang S, Zhong Q (2019) Mol Catal 479:110549

    CAS  Google Scholar 

  29. Zhang S, Zhong Q, Shen Y, Zhu L, Ding J (2015) J Colloid Interface Sci 448:417–426

    CAS  PubMed  Google Scholar 

  30. Chen L, Weng D, Wang J, Weng D, Cao L (2018) Chin J Catal 39(11):1804–1813

    CAS  Google Scholar 

  31. Zong L, Zhang G, Zhao H, Zhang J, Tang Z (2018) Chem Eng J 354:295–303

    CAS  Google Scholar 

  32. Li Z, Li J, Liu S, Ren X, Ma J, Su W, Peng Y (2015) Catal Today 258:11–16

    CAS  Google Scholar 

  33. Wang H, Cai K, Liu J, Zhang X, Li Y, Cheng K, Liu J, Li C, Ding F, Song Y (2016) RSC Adv 6:84294–84308

    CAS  Google Scholar 

  34. Zhu T, Li J, Wu Q (2011) ACS Appl Mater Interfaces 3:3448–3453

    CAS  PubMed  Google Scholar 

  35. Zhang J, Liu X, Xing A, Liu J (2018) ACS Appl Energy Mater 1:2758–2768

    CAS  Google Scholar 

  36. Lekphet W, Ke TC, Su C, Kathirvel S, Sireesha P, Akula SB, Li WR (2016) Appl Surf Sci 382:15–26

    CAS  Google Scholar 

  37. Chen J, Tan Y, Li C, Cheah YL, Luan D, Madhavi S, Boey FYC, Archer LA, Lou X (2010) J Am Chem Soc 132:6124–6130

    CAS  PubMed  Google Scholar 

  38. Cheng K, Song W, Cheng Y, Liu J, Zhao Z, Wei Y (2016) Catal Sci Technol 6:4478–4490

    CAS  Google Scholar 

  39. Bao Y, Kang Q, Ma J (2018) Colloid Surf A 537:69–75

    CAS  Google Scholar 

  40. Tian G, Chen Y, Zhou W, Pan K, Tian C, Huang X, Fu H (2011) CrystEngComm 13:2994

    CAS  Google Scholar 

  41. Zong L, Zhang G, Zhao J, Dong F, Zhang J, Tang Z (2018) Chem Eng J 343:500–511

    CAS  Google Scholar 

  42. Zong L, Zhang J, Lu G, Tang Z (2018) Catal Surv Asia 22:105–117

    Google Scholar 

  43. He K, Wen Q, Wang C, Wang B, Yu S, Hao C, Chen K (2018) Chem Eng J 349:416–427

    CAS  Google Scholar 

  44. He F, Li J, Li T, Li G (2014) Chem Eng J 237:312–321

    CAS  Google Scholar 

  45. Mao L, Wang Y, Zhong Y, Ning J, Hu Y (2013) J Mater Chem A 1:8101

    CAS  Google Scholar 

  46. Zhou J, Zhao G, Song B, Han G (2011) CrystEngComm 13(7):2294

    CAS  Google Scholar 

  47. Guo J, Zhang G, Tang Z, Zhang J (2019) Catal Surv. Asia. 23:311–321

    CAS  Google Scholar 

  48. Cao L, Wu X, Xu Y, Lin Q, Hu J, Chen Y, Ran R, Weng D (2019) Catal Commun 120:55–58

    CAS  Google Scholar 

  49. Zhang G, Huang X, Yang X, Tang Z (2019) Catal Sci Technol 9:2231–2244

    CAS  Google Scholar 

  50. Gao X, Jiang Y, Fu Y, Zhong Y, Luo Z, Cen K (2010) Catal Commun 11(5):465–469

    CAS  Google Scholar 

  51. Baidya T, Gupta A, Deshpandey PA, Madras G, Hegde MS (2009) J Phys Chem C 113:4059–4068

    CAS  Google Scholar 

  52. Ning P, Song Z, Li H, Zhang Q, Liu X, Zhang J, Tang X, Huang Z (2015) Appl Surf Sci 332:130–137

    CAS  Google Scholar 

  53. Liu Z, Su H, Li J, Li Y (2015) Catal Commun 65:51–54

    CAS  Google Scholar 

  54. Murugan B, Ramaswamy AV (2008) J Phys Chem C 112:20429–20442

    CAS  Google Scholar 

  55. Zeng Y, Zhang S, Wang Y, Zhong Q (2017) J Colloid Interface Sci 496:487–495

    CAS  PubMed  Google Scholar 

  56. Cheng K, Liu J, Zhang T, Li J, Zhao Z, Wei Y, Jiang G, Duan A (2014) J Environ Sci 26:2106–2113

    Google Scholar 

  57. Wu W, Wu J, Chen J (2011) ACS Appl Mater Interfaces 3:2616–2621

    CAS  PubMed  Google Scholar 

  58. Wang G, Ling Y, Wang H, Yang X, Wang C, Zhang J, Li Y (2012) Energy Environ Sci 5:6180

    CAS  Google Scholar 

  59. Yu L, Zhong Q, Deng Z, Zhang S (2016) J Mol Catal A: Chem 423:371–378

    CAS  Google Scholar 

  60. Geng Y, Chen X, Yang S, Liu F, Shan W (2017) ACS Appl Mater Interfaces 9:16951–16958

    CAS  PubMed  Google Scholar 

  61. Michalow-Mauke KA, Lu Y, Kowalski K, Graule T, Nachtegaal M, Kröcher O, Ferri D (2015) ACS Catal 5:5657–5672

    CAS  Google Scholar 

  62. Cai S, Zhang D, Zhang L, Huang L, Li H, Gao R, Shi L, Zhang J (2014) Catal Sci Technol 4:93–101

    CAS  Google Scholar 

  63. Huang X, Zhang G, Dong F, Tang Z (2018) Catal Sci Technol 8:5604–5615

    CAS  Google Scholar 

  64. Huang X, Zhang G, Dong F, Tang Z (2018) J Ind Eng Chem 69:66–76

    Google Scholar 

  65. Zhang G, Han W, Dong F, Zong L, Lu G, Tang Z (2016) RSC Adv 6:76556–76567

    CAS  Google Scholar 

  66. Yang S, Guo Y, Chang H, Ma L, Peng Y, Qu Z, Yan N, Wang C, Li J (2013) Appl Catal B: Environ 136–137:19–28

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51808529), the Major Project of Inner Mongolia Science and Technology (2019ZD018), the DNL Cooperation Found, CAS (DNL201906), Science and Technology Service Network Initiative (STS) of Chinese Academy of Science (KFJ-STS-QYZD-170), the Science and Technology Program of Chengguan district, Lanzhou city (2019JSCX0042).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhicheng Tang or Jiyi Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Zhang, G., Tang, Z. et al. Morphology-Controlled Synthesis of TiO2 with Different Structural Units and Applied for the Selective Catalytic Reduction of NOx with NH3. Catal Surv Asia 24, 300–312 (2020). https://doi.org/10.1007/s10563-020-09312-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-020-09312-6

Keywords

Navigation