Skip to main content
Log in

Effect of Preparation Method on Catalytic Performance of Ag/OMS-2 for the Oxidation of Ethyl Acetate and Formaldehyde

  • Original Article
  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

The octahedral molecular sieve (OMS-2)-supported Ag samples were prepared by the pre-incorporation, ion exchange, and polyvinyl alcohol (PVA)-protecting methods, respectively. The XRD, TEM, BET, H2-TPR, O2-TPD, and FT-IR techniques were used to investigate effects of the preparation method on physicochemical property of the samples, over which oxidation of ethyl acetate and formaldehyde was used as probe reactions. It is found that catalytic activity was dependent on physicochemical property of the sample, and decreased in the order of Ag/OMS-2-PI > Ag/OMS-2-IE > Ag/OMS-2-PVA > OMS-2. The Ag/OMS-2-PI sample performed the best: the T90 for ethyl acetate and formaldehyde oxidation was 200 and 170 °C, respectively. The Ag species in Ag/OMS-2-PI were uniformly distributed in the pores and channels of the OMS-2 support. The characterization results indicate that the outstanding catalytic activity of Ag/OMS-2-PI was due to its high surface Mn3+ and adsorbed oxygen species concentrations, good low-temperature reducibility, and the largest surface area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Song MD, Liu XG, Zhang YH, Shao M, Lu KD, Tan QW, Feng M, Qu Y (2019) Atmos Environ 201:28–40

    Article  CAS  Google Scholar 

  2. Zhao Y, Mao P, Zhou YD, Yang Y, Zhang J, Wang SK, Dong YP, Xie FJ, Yu YY, Li WQ (2017) Atoms Chem Phys 17(12):7733–7756

    Article  CAS  Google Scholar 

  3. Bai BY, Qiao Q, Li JH, Hao JM (2016) Chinese J Catal 37:27–31

    Article  CAS  Google Scholar 

  4. Yu JG, Li XY, Xu ZH, Xiao W (2013) Environ Sci Technol 47:9928–9933

    Article  CAS  Google Scholar 

  5. Zhu XB, Gao X, Qin R, Zeng YX, Qu RY, Zheng CH (2015) Appl Catal B 170–171:293–300

    Article  Google Scholar 

  6. Liu YX, Deng JG, Xie SH, Wang ZW, Dai HX (2016) Chinese J Catal 37:1193–1205

    Article  CAS  Google Scholar 

  7. Bai BY, Qiao Q, Li JH, Hao JM (2016) Chinese J Catal 37:102–122

    Article  CAS  Google Scholar 

  8. Weng XL, Long Y, Wang WL, Shao M, Wu ZB (2019) Structural effect and reaction mechanism of MnO2 catalysts in the catalytic oxidation of chlorinated. Chinese J Catal 40:638–646

    Article  CAS  Google Scholar 

  9. Wang X, Li YD (2003) Chem Eur J 9:300–306

    Article  Google Scholar 

  10. Chen ZW, Lai JKL, Shek CH (2006) J Non-Cryst Solids 352:3285–3289

    Article  CAS  Google Scholar 

  11. Zhang Q, Cheng XD, Qiu GH, Liu F, Feng XH (2016) Solid State Sci 55:152–158

    Article  CAS  Google Scholar 

  12. Fu ZD, Liu LS, Song Y, Ye Q, Cheng SY, Kang TF, Dai HX (2017) Front Chem Sci Eng 11:185–196

    Article  CAS  Google Scholar 

  13. Ma L, Wang DS, Li JH, Bai BY, Fu LX, Li YD (2014) Appl Catal B 148–149:36–43

    Google Scholar 

  14. Xu J, Li JQ, Yang QL, Xiong Y, Chen CG (2017) Electrochim Acta 251:672–680

    Article  CAS  Google Scholar 

  15. Ju LCM, Massot M, Poinsignon C (2004) Spectrochim Acta A 60:689–700

    Article  Google Scholar 

  16. Kaabi N, Chouchene B, Mabrouk W, Matoussi F, Hmida ESBH (2018) Solid State Ionics 325:74–79

    Article  CAS  Google Scholar 

  17. Rao TP, Kumar A, Naik VM, Naik R (2019) J Alloy Compd 789:518–527

    Article  CAS  Google Scholar 

  18. Yang CZ, Zhou M, Xu Q (2013) Phys Chem Chem Phys 15:19730–19740

    Article  CAS  Google Scholar 

  19. Fu JL, Dong N, Ye Q, Cheng SY, Kang TF, Dai HX (2018) New J Chem 42:18117–18127

    Article  CAS  Google Scholar 

  20. Jeong HJ, Bae JW, Han JW, Lee HJ (2017) ACS Catal 7:7097–7105

    Article  CAS  Google Scholar 

  21. He BB, Cheng G, Zhao SF, Zeng XH, Li YF, Yang RN, Sun M, Yu L (2019) J Solid State Chem 269:305–311

    Article  CAS  Google Scholar 

  22. Gao FY, Tang XL, Yi HH, Chu C, Li N, Li JY, Zhao SZ (2017) Chem Eng J 322:525–537

    Article  CAS  Google Scholar 

  23. Panov GI, Dubkov KA, Starokon EV (2006) Catal Today 117:148–155

    Article  CAS  Google Scholar 

  24. Martin S, Aschauer U, Scheiber P, Li YF, Hou WY, Schmid M, Selloni A, Diebold U (2013) Science 341:988–991

    Article  Google Scholar 

  25. Richter M (2002) Langpape M, Kolf S, Grubert G, Eckelt R, Radnik J, Schneider M, Pohl MM, Fricke R. Appl Catal B 36:261–277

    Article  CAS  Google Scholar 

  26. She X, Flytzani-Stephanopoulos M (2006) J Catal 237:79–93

    Article  CAS  Google Scholar 

  27. Sun H, Liu ZG, Chen S, Quan C (2015) Chem Eng J 270:58–65

    Article  CAS  Google Scholar 

  28. Yang Y, Huang J, Wang SW, Deng SB, Wang B, Yu G (2013) Appl Catal B 142–143:568–578

    Article  Google Scholar 

  29. Lou Y, Ma J, Hu W, Dai QG, Wang L, Zhan WC, Guo YL, Cao XM, Guo Y, Hu P, Lu GZ (2016) ACS Catal 6:8127–8139

    Article  CAS  Google Scholar 

  30. Kong ZJ (2014) W C, Ding ZN, Chen YF, Zhang ZK. J Fuel Chem Technol 42:1447–1454

    Article  CAS  Google Scholar 

  31. Qin Y, Shen FX, Zhu TL, Hong W, Liu XL (2018) RSC Adv 8:33425–33431

    Article  CAS  Google Scholar 

  32. Yu L, Peng RS, Chen LM (2018) Fu ML Wu JL Ye DQ. Chem Eng J 334:2480–2487

    Article  CAS  Google Scholar 

  33. Wang Y, Dai CY, Chen BB, Wang YD, Shi C, Guo XW (2015) Catal Today 258:616–626

    Article  CAS  Google Scholar 

  34. Gandhe AR, Rebello JS, Figueiredo JL, Fernandes JB (2007) Appl Catal B 72:129–135

    Article  CAS  Google Scholar 

  35. Sekine Y (2002) Atmos Environ 36:5543–5547

    Article  CAS  Google Scholar 

  36. Zhang CB, He H, Tanaka K (2006) Appl Catal B 65:37–43

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21277008 and 20777005), National Key Research and Development Program of China (Grant No. 2017YFC0209905), and Natural Science Foundation of Beijing (Grant No. 8082008). We also thank Prof. Ralph T. Yang (The University of Michigan) for his helpful discussion and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Ye or Hongxing Dai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, N., Fu, J., Ye, Q. et al. Effect of Preparation Method on Catalytic Performance of Ag/OMS-2 for the Oxidation of Ethyl Acetate and Formaldehyde. Catal Surv Asia 24, 259–268 (2020). https://doi.org/10.1007/s10563-020-09311-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-020-09311-7

Keywords

Navigation