Skip to main content
Log in

Influence of the Plasma of Pd–Ce/Porous Biomass Carbons Catalysts on the Surface Texture with Enhance Catalytic Activity Toward CO Oxidation

  • Original Article
  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

The porous biomass carbons (PBCs) as catalyst supports were synthesized by simple hydrothermal and carbonization method, and the surface property of PBCs were designed by plasma treatment technology. The Pd and Ce loaded TPBCs (PBCs were treated with plasma) supports were evaluated for their catalytic activity in the CO oxidation reaction. The Pd–Ce/TPBCs-20 catalyst (Conditions: CO concentration: 1 vol%, Total flow rate: 50 mL min−1, Moisture: 4 vol%) exhibited the highest catalytic activity, and the complete conversion temperature (T100) was about 20 °C for CO catalytic oxidation. Moreover, the Pd–Ce/TPBCs-20 catalyst behaved an excellent stability with the CO conversion rate in the presence of moisture, remaining higher than 90% after 24 h on stream at 20 °C. Raman, XPS, H2-TPR and O2-TPD analysis revealed that the surface oxygen-containing functional groups and defect concentration will increase with increasing plasma treatment time, which could improved Pd and Ce diffusion and Pd–O–Ce bonding interactions, resulting in increased CO catalytic activity. In addition, chitosan as the raw material for the synthesis of PBCs support, is low-cost and easy to be obtained from nature. Therefore, the Pd–Ce/TPBCs catalysts have great potential for catalytic removal of CO in practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang XD, Yang Y, Song L, Wang YX, He C, Wang Z, Cui LF (2018) High and stable catalytic activity of Ag/Fe2O3 catalysts derived from MOFs for CO oxidation. Mol Catal 447:80–89

    Article  CAS  Google Scholar 

  2. Yang YQ, Dong H, Wang Y, Wang YX, Liu N, Wang DJ, Zhang XD (2017) A facile synthesis for porous CuO/Cu2O composites derived from MOFs and their superior catalytic performance for CO oxidation. Inorg Chem Commun 86:74–77

    Article  CAS  Google Scholar 

  3. Zhang XD, Hou FL, Li HX, Yang Y, Wang YX, Liu N, Yang YQ (2018) A strawsheave-like metal organic framework Ce-BTC derivative containing high specific surface area for improving the catalytic activity of CO oxidation reaction. Microporous Mesoporous Mater 259:211–219

    Article  CAS  Google Scholar 

  4. Cui LF, Zhao D, Yang Y, Wang YX, Zhang XD (2017) Synthesis of highly efficient α-Fe2O3 catalysts for CO oxidation derived from MIL-100(Fe). J Solid State Chem 247:168–172

    Article  CAS  Google Scholar 

  5. Zhang XD, Li HX, Lu XT, Xu JC, Wang YX, He C, Liu N, Yang YQ, Wang Y (2018) Facile synthesis of highly efficient amorphous Mn-MIL-100 catalysts: formation mechanism and structure changes during application in CO oxidation. Chem-Eur J 24:8822–8832

    Article  CAS  PubMed  Google Scholar 

  6. Zhang XD, Hou FL, Yang Y, Wang YX, Liu N, Chen D, Yang YQ (2017) A facile synthesis for cauliflower like CeO2 catalysts from Ce-BTC precursor and their catalytic performance for CO oxidation. Appl Surf Sci 423:771–779

    Article  CAS  Google Scholar 

  7. Wang L, Yin GY, Yang YQ, Zhang XD (2019) Enhanced CO oxidation and toluene oxidation on CuCeZr catalysts derived from UiO-66 metal organic frameworks. React Kinet Mech Catal 128:193–204

    Article  CAS  Google Scholar 

  8. Yan Z, Xu Z, Yue L, Shi L, Huang L (2018) Hierarchical Ni-Al hydrotalcite supported Pt catalyst for efficient catalytic oxidation of formaldehyde at room temperature. Chin J Catal 39:1919–1928

    Article  CAS  Google Scholar 

  9. Donoeva B, Masoud N, Jongh PE (2017) Carbon support surface effects in the gold-catalyzed oxidation of 5-hydroxymethylfurfural. ACS Catal 7:4581–4591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hussain A (2013) Beneficial effect of Cu on a Cu-modified Au catalytic surface for CO oxidation reaction: a DFT study. J Phys Chem C 117:5084–5094

    Article  CAS  Google Scholar 

  11. Frank A, Rinaldi A, Blume R, Schlögl R, Su D (2010) Oxidation stability of multiwalled carbon nanotubes for catalytic applications. Chem Mater 22:4462–4470

    Article  CAS  Google Scholar 

  12. Chen G, Xu Q, Yang Y, Li C, Huang T, Sun G, Zhang S, Ma D, Li X (2015) Facile and mild strategy to construct mesoporous CeO2−CuO nanorods with enhanced catalytic activity toward CO oxidation. ACS Appl Mater Interfaces 7:23538–23544

    Article  CAS  PubMed  Google Scholar 

  13. Xie Q, Zhao Y, Guo H, Lu A, Zhang X, Wang L, Chen M, Peng D (2014) Facile preparation of well-dispersed CeO2–ZnO composite hollow microspheres with enhanced catalytic activity for CO oxidation. ACS Appl Mater Interfaces 6:421–428

    Article  CAS  PubMed  Google Scholar 

  14. Su Y, Dai L, Zhang Q, Li Y, Peng J, Wu RA, Han W, Tang Z, Wang Y (2016) Fabrication of Cu-doped CeO2 catalysts with different dimension pore structures for CO catalytic oxidation. Catal Surf Asia 20:231–240

    Article  CAS  Google Scholar 

  15. Guo H, He Y, Wang Y, Liu L, Yang X, Wang S, Huang Z, Wei Q (2013) Morphology-controlled synthesis of Cage-Bell Pd@CeO2 structured nanoparticle aggregates as catalysts for the low-temperature oxidation of CO. J Mater Chem A 1:7494–7499

    Article  CAS  Google Scholar 

  16. Rao R, Yang M, Li C, Dong H, Fang S, Zhang A (2015) A facile synthesis for hierarchical porous CeO2 nanobundles and their superior catalytic performance for CO oxidation. J Mater Chem A 3:782–788

    Article  CAS  Google Scholar 

  17. Wang X, Liu D, Song S, Zhang H (2013) Pt@CeO2 Multicore@Shell self-assembled nanospheres: clean synthesis, structure optimization, and catalytic applications. J Am Chem Soc 135:15864–15872

    Article  CAS  PubMed  Google Scholar 

  18. Su Y, Yuan S, Ning D, Zhang Q, Han W, Wang Y (2018) The template-free synthesis of CuO@CeO2 nanospheres: facile strategy, structure optimization, and enhanced catalytic activity toward CO oxidation. Eur J Inorg Chem 25:2927–2934

    Article  CAS  Google Scholar 

  19. Wang Y, Arandiyan H, Scott J, Bagheri A, Dai H, Amal R (2017) Recent advances in ordered meso/macroporous metal oxides for heterogeneous catalysis: a review. J Mater Chem A 5:8825–8846

    Article  CAS  Google Scholar 

  20. Su Y, Tang Z, Han W, Song Y, Lu G (2015) Effect of different pore structures on the surface textures of the Cu-doped CeO2 catalysts and applied for CO catalytic oxidation. Catal Surf Asia 19:129–139

    Article  CAS  Google Scholar 

  21. Han W, Huang X, Lu G, Tang Z (2018) Carefully designed oxygen-containing functional groups and defects of porous carbon spheres with UV-O3 treatment and their enhanced catalytic performance. Appl Surf Sci 436:747–755

    Article  CAS  Google Scholar 

  22. Su Y, Tang Z, Han W, Song Y, Lu G (2015) Enhanced catalytic performance of three-dimensional ordered mesoporous transition metal (Co, Cu, Fe)-doped CeO2 catalysts for CO catalytic oxidation. Catal Surv Asia 19:68–77

    Article  CAS  Google Scholar 

  23. Widmann D, Behm RJ (2014) Activation of molecular oxygen and the nature of the active oxygen species for CO oxidation on oxide supported Au catalysts. Acc Chem Res 47:740–749

    Article  CAS  PubMed  Google Scholar 

  24. Meng Q, Wang W, Weng X, Liu Y, Wang H, Wu Z (2016) Active oxygen species in Lan+1NinO3n+1 layered perovskites for catalytic oxidation of toluene and methane. J Phys Chem C 120:3259–3266

    Article  CAS  Google Scholar 

  25. Toyoshima R, Yoshida M, Monya Y, Suzuki K, Mun BS, Amemiya K, Mase K, Kondoh H (2012) Active surface oxygen for catalytic CO oxidation on Pd (100) proceeding under near ambient pressure conditions. J Phys Chem Lett 3:3182–3187

    Article  CAS  PubMed  Google Scholar 

  26. Ali S, Liu T, Lian Z, Li B, Su D (2017) The tunable effect of nitrogen and boron dopants on single walled carbon nanotube support on the catalytic properties of single gold atom catalyst: a first principles study of CO oxidation. J Mater Chem A 5:16653–16662

    Article  CAS  Google Scholar 

  27. Han W, Tang Z, Zhang P, Lu G (2015) Fabrication of porous carbon spheres and as support for the application of low-temperature CO oxidation. Appl Surf Sci 350:100–108

    Article  CAS  Google Scholar 

  28. Figueiredo J (2013) Functionalization of porous carbons for catalytic applications. J Mater Chem A 1:9351–9364

    Article  CAS  Google Scholar 

  29. Zhao Y, Dong F, Han W, Zhao H, Tang Z (2017) Promotion effect of the oxygen-containing functional groups and Fe species on the Pd@graphene for CO catalytic oxidation. New J Chem 41:12052–12060

    Article  CAS  Google Scholar 

  30. Han W, Zhang G, Zhao K, Lu G, Tang Z (2015) Surface texture and physicochemical characterization of mesoporous carbon-wrapped Pd–Fe catalysts for low-temperature CO catalytic oxidation. Phys Chem Chem Phys 17:29027–29035

    Article  CAS  PubMed  Google Scholar 

  31. Wang F, Shao S, Liu C, Xu C, Yang R, Dong W (2015) Selective oxidation of glycerol over Pt supported on mesoporous carbon nitride in base-free aqueous solution. Chem Eng J 264:336–343

    Article  CAS  Google Scholar 

  32. Jiang S, Chen M, Wang X, Zhang Y, Huang C, Zhang Y, Wang Y (2019) Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass carbon bifunctional interlayer for advanced lithium-sulfur batteries. Chem Eng J 355:478–486

    Article  CAS  Google Scholar 

  33. Kumar J, Mallampati R, Adin A, Valiyaveettil S (2014) Functionalized carbon spheres for extraction of nanoparticles and catalyst support in water. ACS Sustain Chem Eng 2:2675–2682

    Article  CAS  Google Scholar 

  34. Osbeck S, Bradley RH, Liu C, Idriss H, Ward S (2011) Effect of an ultraviolet/ozone treatment on the surface texture and functional groups on polyacrylonitrile carbon fibres. Carbon 49:4322–4330

    Article  CAS  Google Scholar 

  35. Zhang C, Wu H, Yuan C, Guo Z, Lou X (2012) Confining sulfur in double-shelled hollow carbon spheres for lithium–sulfur batteries. Angew Chem Int Ed 124:1–5

    Article  CAS  Google Scholar 

  36. Lazzarini A, Piovano A, Pellegrini R, Leofanti G, Agostini G, Rudic S, Chierotti MR, Gobetto R, Battiato A, Spoto G, Zecchina A, Lambertiah C, Groppo E (2016) A comprehensive approach to investigate the structural and surface properties of activated carbons and related Pd-based catalysts. Catal Sci Technol 6:4910–4922

    Article  CAS  Google Scholar 

  37. Zhu A, Li H, Fu S, Du D, Lin Y (2016) Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures. Chem Soc Rev 45:517–531

    Article  CAS  PubMed  Google Scholar 

  38. Wang W, Ruiz I, Lee I, Zaera F, Ozkan M, Ozkan CS (2015) Improved functionality of graphene and carbon nanotube hybrid foam architecture by UV-ozone treatment. Nanoscale 7:7045–7050

    Article  CAS  PubMed  Google Scholar 

  39. Hu Z, Liu X, Meng D, Guo Y, Guo Y, Lu G (2016) Effect of ceria crystal plane on the physicochemical and catalytic properties of Pd/ceria for CO and propane oxidation. ACS Catal 6:2265–2279

    Article  CAS  Google Scholar 

  40. Qin J, Long Y, Wu W, Zhang W, Gao Z, Ma J (2019) Amorphous Fe2O3 improved [O] transfer cycle of Ce4+/Ce3+ in CeO2 for atom economy synthesis of imines at low temperature. J Catal 371:161–174

    Article  CAS  Google Scholar 

  41. Zhang XD, Zhang XL, Song L, Hou FL, Yang YQ, Wang YX, Liu N (2018) Enhanced catalytic performance for CO oxidation and preferential CO oxidation over CuO/CeO2 catalysts synthesized from metal organic framework: Effects of preparation methods. Int J Hydrog Energy 43:18279–18288

    Article  CAS  Google Scholar 

  42. Hinokuma S, Fujii H, Katsuhara Y, Ikeue K, Machida M (2014) Effect of thermal ageing on the structure and catalytic activity of Pd/CeO2 prepared using arc-plasma process. Catal Sci Technol 4:2990–2996

    Article  CAS  Google Scholar 

  43. He C, Yu Y, Yue L, Qiao N, Li J, Shen Q, Yu W, Chen J, Hao Z (2014) Low-temperature removal of toluene and propanal over highly active mesoporous CuCeOx catalysts synthesized via a simple self-precipitation protocol. Appl Catal B 147:156–166

    Article  CAS  Google Scholar 

  44. Zhang XD, Li HX, Hou FL, Yang Y, Dong H, Liu N, Wang YX, Cui LF (2017) Synthesis of highly efficient Mn2O3 catalysts for CO oxidation derived from Mn-MIL-100. Appl Surf Sci 411:27–33

    Article  CAS  Google Scholar 

  45. Zhu H, Qin Z, Shan W, Shen W, Wang J (2004) Pd/CeO2–TiO2 catalyst for CO oxidation at low temperature: a TPR study with H2 and CO as reducing agents. J Catal 225:267–277

    Article  CAS  Google Scholar 

  46. Bai BY, Arandiyan H, Li JH (2013) Comparison of the performance for oxidation of formaldehyde on nano-Co3O4, 2D-Co3O4 and 3D-Co3O4 catalysts. Appl Catal B 142–143:677–683

    Article  CAS  Google Scholar 

  47. Barbero BP, Gamboa JA, Cadús LE (2006) Synthesis and characterisation of La1-xCaxFeO3 perovskite-type oxide catalysts for total oxidation of volatile organic compounds. Appl Catal B 65:21–30

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Focus on cultivating subjects of Southwest Medical University, 17126.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Shu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2027 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Ren, W. & Shu, J. Influence of the Plasma of Pd–Ce/Porous Biomass Carbons Catalysts on the Surface Texture with Enhance Catalytic Activity Toward CO Oxidation. Catal Surv Asia 24, 156–165 (2020). https://doi.org/10.1007/s10563-020-09297-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-020-09297-2

Keywords

Navigation