Skip to main content
Log in

Recent Studies on Single Site Metal Alkoxide Complexes as Catalysts for Ring Opening Polymerization of Cyclic Compounds

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

The selection of the catalyst is central to being able to control features and to better understand microstructures of polymers. New single-site metal alkoxide catalysts allow chemists to prepare regio/stereo regular polymers or copolymers that meet increasingly demanding performance requirements. These catalysts produce high molecular weights polymers with narrow polydispersity indexes or living properties and essentially regular polymers in structures. This review includes the synthesis, activity, and mechanistic aspects of especially single-site metal alkoxide catalysts with examples from my previous studies and recently published similar articles, beginning with an extensive survey on the aluminum, titanium, zirconium, and tin catalysts used to make polyethers, polyesters, and their derivatives. This review also compares the effects of ligands, substituents on ligands, and central metal atoms on ROP reactions. This review will provide the basis for the researchers who seek the new synthesis and application of catalysts in the future.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16

Similar content being viewed by others

References

  1. Chisholm MH (2008) Catalytic formation of cyclic-esters and-depsipeptides and chemical amplification by complexation with sodium ions. J Organomet Chem 693:808–818

    Article  CAS  Google Scholar 

  2. Klein R, Wurm FR (2015) Aliphatic polyethers: classical polymers for the 21st century. Rapid Commun 36:1147–1165

    Article  CAS  Google Scholar 

  3. Poirier V, Roisnel T, Carpentier JF, Sarazin Y (2011) Zinc and magnesium complexes supported by bulky multidentate amino-ether phenolate ligands: potent pre-catalysts for the immortal ring-opening polymerisation of cyclic esters. Dalton Trans 40:523–534

    Article  CAS  PubMed  Google Scholar 

  4. Minyaev ME, Nifantev IE, Shlyakhtin AV, Ivchenko PV, Lyssenko KA (2018) Phenoxide and alkoxide complexes of Mg, Al and Zn, and their use for the ring-opening polymerization ofε-caprolactone with initiators of different natures. Acta Crystallogr C 74:548–557

    Article  CAS  Google Scholar 

  5. Garden JA, White AJ, Williams CK (2017) Heterodinuclear titanium/zinc catalysis: synthesis, characterization and activity for CO2/epoxide copolymerization and cyclic ester polymerization. Dalton Trans 46:2532–2541

    Article  CAS  PubMed  Google Scholar 

  6. Chisholm MH, Eilerts NW, Huffman JC, Iyer SS, Pacold M, Phomphrai K (2000) Molecular design of single-site metal alkoxide catalyst precursors for ring-opening polymerization reactions leading to polyoxygenates. 1. Polylactide formation by achiral and chiral magnesium and zinc alkoxides,(η3-L) MOR, where L= trispyrazolyl-and trisindazolylborate ligands. J Am Chem Soc 122:11845–11854

    Article  CAS  Google Scholar 

  7. Darensbourg DJ, Ganguly P, Billodeaux D (2005) Ring-opening polymerization of trimethylene carbonate using aluminum (III) and tin (IV) salen chloride catalysts. Macromolecules 38:5406–5410

    Article  CAS  Google Scholar 

  8. Darensbourg DJ, Poland RR, Escobedo C (2012) Kinetic studies of the alternating copolymerization of cyclic acid anhydrides and epoxides, and the terpolymerization of cyclic acid anhydrides, epoxides, and CO2 catalyzed by (salen) CrIIICl. Macromolecules 45:2242–2248

    Article  CAS  Google Scholar 

  9. Harrold ND, Li Y, Chisholm MH (2013) Studies of ring-opening reactions of styrene oxide by chromium tetraphenylporphyrin initiators Mechanistic and stereochemical considerations. Macromolecules 46:692–698

    Article  CAS  Google Scholar 

  10. Robert C, Ohkawara T, Nozaki K (2014) Manganese-corrole complexes as versatile catalysts for the ring-opening homo-and co-polymerization of epoxide. Chem Eur J 20:4789–4795

    Article  CAS  PubMed  Google Scholar 

  11. Mundil R, Hoštálek Z, Šeděnková I, Merna J (2015) Alternating ring-opening copolymerization of cyclohexene oxide with phthalic anhydride catalyzed by iron (III) salen complexes. Macromol Res 23:161–166

    Article  CAS  Google Scholar 

  12. Aida T, Sanuki K, Inoue S (1985) Well-controlled polymerization by metalloporphyrin. Synthesis of copolymer with alternating sequence and regulated molecular weight from cyclic acid anhydride and epoxide catalyzed by the system of aluminum porphyrin coupled with quaternary organic salt. Macromolecules 18:1049–1055

    Article  CAS  Google Scholar 

  13. Isnard F, Lamberti M, Pellecchia C, Mazzeo M (2017) Ring-opening copolymerization of epoxides with cyclic anhydrides promoted by bimetallic and monometallic phenoxy-imine aluminum complexes. ChemCatChem 9:2972–2979

    Article  CAS  Google Scholar 

  14. Garcés A, Sánchez-Barba LF, Fernández-Baeza J, Otero A, Fernández I, Lara-Sánchez A, Rodríguez AM (2018) Organo-aluminum and zinc acetamidinates: preparation, coordination ability, and ring-opening polymerization processes of cyclic esters. Inorg Chem 57:12132–12142

    Article  PubMed  CAS  Google Scholar 

  15. Sumrit P, Chuawong P, Nanok T, Duangthongyou T, Hormnirun P (2016) Aluminum complexes containing salicylbenzoxazole ligands and their application in the ring-opening polymerization of rac-lactide and ε-caprolactone. Dalton Trans 45:9250–9266

    Article  CAS  PubMed  Google Scholar 

  16. Yu CY, Chuang HJ, Ko BT (2016) Bimetallic bis (benzotriazole iminophenolate) cobalt, nickel and zinc complexes as versatile catalysts for coupling of carbon dioxide with epoxides and copolymerization of phthalic anhydride with cyclohexene oxide. Catal Sci Technol 6:1779–1791

    Article  CAS  Google Scholar 

  17. Chmura AJ, Davidson MG, Jones MD, Lunn MD, Mahon MF (2006) Group 4 complexes of amine bis (phenolate) s and their application for the ring opening polymerisation of cyclic esters. Dalton Trans 7:887–889

    Article  Google Scholar 

  18. Longo JM, Sanford MJ, Coates GW (2016) Ring-opening copolymerization of epoxides and cyclic anhydrides with discrete metal complexes: structure–property relationships. Chem Rev 116:15167–15197

    Article  CAS  PubMed  Google Scholar 

  19. Trott G, Saini PK, Williams CK (2016) Catalysts for CO2/epoxide ring-opening copolymerization. Philos Trans R Soc A 374:20150085

    Article  CAS  Google Scholar 

  20. Stanford MJ, Dove AP (2010) Stereocontrolled ring-opening polymerisation of lactide. Chem Soc Rev 39:486–494

    Article  CAS  PubMed  Google Scholar 

  21. Jianming R, Anguo X, Hongwei W, Hailin Y (2014) Review–recent development of ring-opening polymerization of cyclic esters using aluminum complexes. Des Monomers Polym 17:345–355

    Article  CAS  Google Scholar 

  22. Dijkstra PJ, Du H, Feijen J (2011) Single site catalysts for stereoselective ring-opening polymerization of lactides. Polym Chem 2:520–527

    Article  CAS  Google Scholar 

  23. Hoebbel D, Nacken M, Schmidt H (2001) On the influence of metal alkoxides on the epoxide ring-opening and condensation reactions of 3-glycidoxypropyltrimethoxysilane. J Sol-Gel Sci Technol 21:177–187

    Article  CAS  Google Scholar 

  24. Li P, Zerroukhi A, Chen J, Chalamet Y, Jeanmaire T, Xia Z (2009) Synthesis of poly (ɛ-caprolactone)-block-poly (n-butyl acrylate) by combining ring-opening polymerization and atom transfer radical polymerization with Ti [OCH2CCl3]4 as difunctional initiator: I. Kinetic study of Ti [OCH2CCl3]4 initiated ring-opening polymerization of ɛ-caprolactone. Polymer 50:1109–1117

    Article  CAS  Google Scholar 

  25. Schubert U (2003) Silica-based and transition metal-based inorganic-organic hybrid Materials—a comparison. J Sol-Gel Sci Technol 26:47–55

    Article  CAS  Google Scholar 

  26. Gökalp Y, Kayan A (2018) Synthesis and characterization of Ti-/Zr-diphenylpropanedione complexes and their application in the ring opening polymerization of Ɛ-caprolactone. J Turk Chem Soc Sec A 5:1095–1104

    Article  CAS  Google Scholar 

  27. Yalcin G, Yildiz U, Kayan A (2012) Preparation of Al, Ti, Zr-perfluoroheptanoate compounds and their use in ring opening polymerization. Appl Catal A 423:205–210

    Article  CAS  Google Scholar 

  28. Kayan A (2019) Inorganic-organic hybrid materials and their adsorbent properties. Adv Compos Hybrid Mater 2:34–45

    Article  CAS  Google Scholar 

  29. Caiut JMA, Rocha LA, Sigoli FA, Messaddeq Y, Dexpert-Ghys J, Ribeiro SJ (2008) Aluminoxane-epoxi-siloxane hybrids waveguides. J Non-Cryst Solids 354:4795–4799

    Article  CAS  Google Scholar 

  30. Caldara M, Colleoni C, Guido E, Re V, Rosace G (2016) Optical monitoring of sweat pH by a textile fabric wearable sensor based on covalently bonded litmus-3-glycidoxypropyltrimethoxysilane coating. Sens Actuators B 222:213–220

    Article  CAS  Google Scholar 

  31. Plutino MR, Guido E, Colleoni C, Rosace G (2017) Effect of GPTMS functionalization on the improvement of the pH-sensitive methyl red photostability. Sens Actuators B 238:281–291

    Article  CAS  Google Scholar 

  32. Van Leeuwen PWNM (2004) Homogeneous catalysis: understanding the art. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  33. Darensbourg DJ, Yarbrough JC (2002) Mechanistic aspects of the copolymerization reaction of carbon dioxide and epoxides, using a chiral salen chromium chloride catalyst. J Am Chem Soc 124:6335–6342

    Article  CAS  PubMed  Google Scholar 

  34. Jacobsen EN (2000) Asymmetric catalysis of epoxide ring-opening reactions. Acc Chem Res 33:421–431

    Article  CAS  PubMed  Google Scholar 

  35. Chisholm MH, Zhou Z (2004) Concerning the mechanism of the ring opening of propylene oxide in the copolymerization of propylene oxide and carbon dioxide to give poly(propylene carbonate). J Am Chem Soc 126:11030–11039

    Article  CAS  PubMed  Google Scholar 

  36. Chisholm MH, Navarro-Llobet D (2002) NMR assignments of regioregular poly (propylene oxide) at the triad and tetrad level. Macromolecules 35:2389–2392

    Article  CAS  Google Scholar 

  37. Innocenzi P, Brusatin G, Guglielmi M, Signorini R, Bozio R, Maggini M (2000) 3-(Glycidoxypropyl)-trimethoxysilane-TiO2 hybrid organic–inorganic materials for optical limiting. J Non-Cryst Solids 265:68–74

    Article  CAS  Google Scholar 

  38. Wang J, Fan X, Tian W, Wang Y, Li J (2011) Ring-opening polymerization of γ-glycidoxypropyltrimethoxysilane catalyzed by multi-metal cyanide catalyst. J Polym Res 18:2133–2139

    Article  CAS  Google Scholar 

  39. Sang T, Li S, Ting HK, Stevens MM, Becer CR, Jones JR (2018) Hybrids of Silica/poly (caprolactone coglycidoxypropyl trimethoxysilane) as biomaterials. Chem Mater 30:3743–3751

    Article  CAS  Google Scholar 

  40. Yalcin G, Kayan A (2012) Synthesis and characterization of Zr, Ti, Al-phthalate and pyridine-2-carboxylate compounds and their use in ring opening polymerization. Appl Catal A 433:223–228

    Article  CAS  Google Scholar 

  41. Schütz C, Dwars T, Schnorpfeil C, Radnik J, Menzel M, Kragl U (2007) Selective polymerization of propylene oxide by a tin phosphate coordination polymer. J Polym Sci Part A 45:3032–3041

    Article  CAS  Google Scholar 

  42. Huang BH, Tsai CY, Chen CT, Ko BT (2016) Metal complexes containing nitrogen-heterocycle based aryloxide or arylamido derivatives as discrete catalysts for ring-opening polymerization of cyclic esters. Dalton Trans 45:17557–17580

    Article  CAS  PubMed  Google Scholar 

  43. Lalrempuia R, Breivik F, Törnroos KW, Le Roux E (2017) Coordination behavior of bis-phenolate saturated and unsaturated N-heterocyclic carbene ligands to zirconium: reactivity and activity in the copolymerization of cyclohexene oxide with CO2. Dalton Trans 46:8065–8076

    Article  CAS  PubMed  Google Scholar 

  44. Romain C, Thevenon A, Saini PK, Williams CK (2016) In: Carbon dioxide and organometallics, vol 53. Springer, Switzerland, pp 101–142

  45. Kayan A (2012) Polymerization of 3-glycidyloxypropyltrimethoxysilane with different catalysts. J Appl Polym Sci 123:3527–3534

    Article  CAS  Google Scholar 

  46. Yalçın G, Kayan A (2012) Ring-opening polymerization of isopropylglycidyl ether (IPGE) with new catalysts of Ti, Sn, Al-alkoxides and comparison of its reactivity. Des Monomers Polym 15:405–416

    Article  CAS  Google Scholar 

  47. Misaka H, Sakai R, Satoh T, Kakuchi T (2011) Synthesis of high molecular weight and end-functionalized poly (styrene oxide) by living ring-opening polymerization of styrene oxide using the alcohol/phosphazene base initiating system. Macromolecules 44:9099–9107

    Article  CAS  Google Scholar 

  48. Kayan A (2015) Synthesis of poly (styrene oxide) with different molecular weights using tin catalysts. Des Monomers Polym 18:545–549

    Article  CAS  Google Scholar 

  49. Grobelny Z, Matlengiewicz M, Jurek-Suliga J, Golba S, Skrzeczyna K, Kwapulińska D (2017) Ring opening polymerization of styrene oxide initiated with potassium alkoxides and hydroxyalkoxides activated by 18-crown-6: determination of mechanism and preparation of new polyether-polyols. Polym Bull 74:4763–4780

    Article  CAS  Google Scholar 

  50. Mert O, Kayan A (2014) Synthesis and characterization of substituted salicylate zirconium compounds and their catalytic activity over ε-caprolactone. J Incl Phen Macrocycl Chem 80:409–416

    Article  CAS  Google Scholar 

  51. Thurston JH, Kumar A, Hofmann C, Whitmire KH (2004) Heterobimetallic Bi (III)-Ti(IV) coordination complexes: synthesis and solid-state structures of BiTi4 (sal)6(μ-OiPr)3 (OiPr)4, and the cyclic isomers Bi4Ti4(sal)10 (μ-OiPr)4(OiPr)4 and Bi8Ti8 (sal)20(μ-OiPr)8 (OiPr)8. Inorg Chem 43:8427–8436

    Article  CAS  PubMed  Google Scholar 

  52. Stavila V, Thurston JH, Whitmire KH (2009) Selective arylation reactions of bismuth-transition metal salicylate complexes. Inorg Chem 48:6945–6951

    Article  CAS  PubMed  Google Scholar 

  53. Espinoza SM, Patil HI, San Martin Martinez E, Casañas Pimentel R, Ige PP (2018) Poly-ε-caprolactone (PCL), a promising polymer for pharmaceutical and biomedical applications: focus on nanomedicine in cancer. Int J Polym Mater Po 1–42

  54. Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer-Polycaprolactone in the 21st century. Prog Polym Sci 35:1217–1256

    Article  CAS  Google Scholar 

  55. Reyes-López SY, Richa AM (2013) The ring-opening polymerization of ε-caprolactone catalyzed by molybdenum trioxide: a kinetic approach study using NMR and DSC data. Macromol Symp 325:21–37

    Article  CAS  Google Scholar 

  56. He X, Tu G, Zhang F, Huang S, Cheng C, Zhu C, Chen D (2018) Bis-(salicylaldehyde-benzhydrylimino) nickel complexes with different electron groups: crystal structure and their catalytic properties toward (co) polymerization of norbornene and 1-hexene. RSC Adv 8:36298–36312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kricheldorf HR, Berl M, Scharnagl N (1988) Poly (lactones). 9. Polymerization mechanism of metal alkoxide initiated polymerizations of lactide and various lactones. Macromolecules 21:286–293

    Article  CAS  Google Scholar 

  58. Dubois P, Jacobs C, Jérôme R, Teyssie P (1991) Macromolecular engineering of polylactones and polylactides. 4. Mechanism and kinetics of lactide homopolymerization by aluminum isopropoxide. Macromolecules 24:2266–2270

    Article  CAS  Google Scholar 

  59. Mun SD, Hong YJ, Kim YJ (2007) Synthesis, X-ray structure, and l-lactide/ε-caprolactone polymerization behavior of monomeric aryloxytitanatrane. Bull Korean Chem Soc 28:698–700

    Article  CAS  Google Scholar 

  60. Silawanich A, Muangpil S, Kungwan N, Meepowpan P, Punyodom W, Lawan N (2016) Theoretical study of efficiency comparison of Ti (IV) alkoxides as initiators for ring-opening polymerization of ε-caprolactone. Comp Theor Chem 1090:17–22

    Article  CAS  Google Scholar 

  61. Kricheldorf HR, Langanke D (2002) Polylactones 54: ring-opening and ring-expansionpolymerizations of ϵ-caprolactone initiated by germanium alkoxides. Polymer 43:1973–1977

    Article  CAS  Google Scholar 

  62. Pappuru S, Chakraborty D, Sundar JV, Roymuhury SK, Ramkumar V, Subramanian V, Chand DK (2016) Group 4 complexes of salicylbenzoxazole ligands as effective catalysts for the ring-opening polymerization of lactides, epoxides and copolymerization of ε-caprolactone with L-lactide. Polymer 102:231–247

    Article  CAS  Google Scholar 

  63. Appavoo D, Omondi B, Guzei IA, Van Wyk JL, Zinyemba O, Darkwa J (2014) Bis (3,5-dimethylpyrazole) copper (II) and zinc (II) complexes as efficient initiators for the ring opening polymerization of ε-caprolactone and d, l-lactide. Polyhedron 69:55–60

    Article  CAS  Google Scholar 

  64. Medina DA, Contreras JM, López-Carrasquero FJ, Cardozo EJ, Contreras RR (2018) Use of samarium (III)–amino acid complexes as initiators of ring-opening polymerization of cyclic esters. Polym Bull 75:1253–1263

    Article  CAS  Google Scholar 

  65. Saito T, Aizawa Y, Yamamoto T, Tajima K, Isono T, Satoh T (2018) Alkali metal carboxylate as an efficient and simple catalyst for ring-opening polymerization of cyclic esters. Macromolecules 51:689–696

    Article  CAS  Google Scholar 

  66. Chen P, Chisholm MH, Gallucci JC, Zhang X, Zhou Z (2005) Binding of propylene oxide to porphyrin-and salen-M (III) cations, where M= Al, Ga, Cr, and Co. Inorg Chem 44:2588–2595

    Article  CAS  PubMed  Google Scholar 

  67. Bernard A, Chatterjee C, Chisholm MH (2013) The influence of the metal (Al, Cr and Co) and the substituents of the porphyrin in controlling the reactions involved in the copolymerization of propylene oxide and cyclic anhydrides by porphyrin metal (III) complexes. Polymer 54:2639–2646

    Article  CAS  Google Scholar 

  68. Chatterjee C, Chisholm MH (2013) Ring-opening polymerization reactions of propylene oxide catalyzed by porphyrin metal (3+) complexes of aluminum, chromium and cobalt. Chem Rec 13:549–560

    Article  CAS  PubMed  Google Scholar 

  69. Xia W, Salmeia KA, Vagin SI, Rieger B (2015) Concerning the deactivation of cobalt (III)-based porphyrin and salen catalysts in epoxide/CO2 copolymerization. Chem Eur J 21:4384–4390

    Article  CAS  PubMed  Google Scholar 

  70. Praban S, Piromjitpong P, Balasanthiran V, Jayaraj S, Chisholm MH, Tantirungrotechai J, Phomphrai K (2019) Highly efficient metal (iii) porphyrin and salen complexes for the polymerization of rac-lactide under ambient conditions. Dalton Trans 48:3223–3230

    Article  CAS  PubMed  Google Scholar 

  71. Yaman H, Kayan A (2017) Synthesis of novel single site tin porphyrin complexes and the catalytic activity of tin tetrakis (4-fluorophenyl) porphyrin over ε-caprolactone. J Porphyrins Phthalocyanine 21:231–237

    Article  CAS  Google Scholar 

  72. Wang X, Thevenon A, Brosmer JL, Yu I, Khan SI, Mehrkhodavandi P, Diaconescu PL (2014) Redox control of group 4 metal ring-opening polymerization activity toward l-lactide and ε-caprolactone. J Am Chem Soc 136:11264–11267

    Article  CAS  PubMed  Google Scholar 

  73. Yildiz BC, Kayan A (2017) Preparation of single-site tin (IV) compounds and their use in the polymerization of ε-caprolactone. Des Monomers Polym 20:89–96

    Article  CAS  PubMed  Google Scholar 

  74. Mert O, Kayan A (2013) Synthesis of silyliminophenolate zirconium compounds and their catalytic activity over lactide/epoxide. Appl Catal A 464:322–331

    Article  CAS  Google Scholar 

  75. Odian G (2004) Principles of polymerization. Wiley, Hoboken

    Book  Google Scholar 

  76. Kayan A, Mert O (2014) Preparation of l-Lactide/3-glycidyloxypropyltrimethoxysilane copolymeric materials with various catalysts. J Inorg Organomet Polym Mater 24:1055–1062

    Article  CAS  Google Scholar 

  77. Penczek S, Pretula J, Lewiński P (2017) Dormant polymers and their role in living and controlled polymerizations; influence on polymer chemistry, particularly on the ring opening polymerization. Polymers 9:646

    Article  PubMed Central  CAS  Google Scholar 

  78. Mandal M, Monkowius U, Chakraborty D (2016) Cadmium acetate as a ring opening polymerization catalyst for the polymerization of rac-lactide, ε-caprolactone and as a precatalyst for the polymerization of ethylene. J Polym Res 23:220

    Article  CAS  Google Scholar 

  79. Sauer A, Kapelski A, Fliedel C, Dagorne S, Kol M, Okuda J (2013) Structurally well-defined group 4 metal complexes as initiators for the ring-opening polymerization of lactide monomers. Dalton Trans 42:9007–9023

    Article  CAS  PubMed  Google Scholar 

  80. Della Monica F, Luciano E, Roviello G, Grassi A, Milione S, Capacchione C (2014) Group 4 metal complexes bearing thioetherphenolate ligands. Coordination chemistry and ring-opening polymerization catalysis. Macromolecules 47:2830–2841

    Article  CAS  Google Scholar 

  81. Liu DC, Li CY, Lin PH, Chen JD, Tsai CY, Lin CH, Ko BT (2018) Titanium complexes bearing benzotriazole iminophenolate ligands as efficient catalysts for ring-opening polymerization of cyclic esters. Inorg Chem Commun 90:1–7

    Article  CAS  Google Scholar 

  82. Su CK, Chuang HJ, Li CY, Yu CY, Ko BT, Chen JD, Chen MJ (2014) Oxo-bridged bimetallic group 4 complexes bearing amine-bis (benzotriazole phenolate) derivatives as bifunctional catalysts for ring-opening polymerization of lactide and copolymerization of carbon dioxide with cyclohexene oxide. Organometallics 33:7091–7100

    Article  CAS  Google Scholar 

  83. Su YC, Liu WL, Li CY, Ko BT (2019) Air-stable di-nuclear yttrium complexes as versatile catalysts for lactide polymerization and copolymerization of epoxides with carbon dioxide or phthalic anhydride. Polymer 167:21–30

    Article  CAS  Google Scholar 

  84. Carpentier JF (2015) Rare-earth complexes supported by tripodal tetradentate bis (phenolate) ligands: a privileged class of catalysts for ring-opening polymerization of cyclic esters. Organometallics 34:4175–4189

    Article  CAS  Google Scholar 

  85. Ligny R, Hänninen MM, Guillaume SM, Carpentier JF (2018) Steric vs. electronic stereocontrol in syndio-or iso-selective ROP of functional chiral β-lactones mediated by achiral yttrium-bisphenolate complexes. Chem Commun 54:8024–8031

    Article  CAS  Google Scholar 

  86. Jiang MT, Kosuru SR, Lee YH, Lu WY, Vandavasi JK, Lai YC, Chen HY (2018) Factors influencing catalytic behavior of titanium complexes bearing bisphenolate ligands toward ring-opening polymerization of L-lactide and ε-caprolactone. Exp Polym Lett 12:126–135

    Article  CAS  Google Scholar 

  87. Xie H, Wu C, Cui D, Wang Y (2018) Ligand-free scandium alkyl and alkoxide complexes for immortal ring-opening polymerization of lactide. J Organomet Chem 875:5–10

    Article  CAS  Google Scholar 

  88. Jones MD, Wu X, Chaudhuri J, Davidson MG, Ellis MJ (2017) Zirconium amine tris (phenolate): a more effective initiator for biomedical lactide. Mater Sci Eng C 80:69–74

    Article  CAS  Google Scholar 

  89. Li X, Yang B, Zheng H, Wu P, Zeng G (2018) Synthesis and characterization of salen-Ti (IV) complex and application in the controllable polymerization of D L-lactide. PLoS ONE 13:e0201054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Marin P, Tschan MJL, Haquette P, Roisnel T, del Rosal I, Maron L, Thomas CM (2019) Single-site cobalt and zinc catalysts for the ring-opening polymerization of lactide. Eur Polym J 120:109208

    Article  CAS  Google Scholar 

  91. Sarazin Y, Carpentier JF (2015) Discrete cationic complexes for ring-opening polymerization catalysis of cyclic esters and epoxides. Chem Rev 115:3564–3614

    Article  CAS  PubMed  Google Scholar 

  92. Osorio Meléndez D, Castro-Osma JA, Lara-Sánchez A, Rojas RS, Otero A (2017) Ring-opening polymerization and copolymerization of cyclic esters catalyzed by amidinatealuminum complexes. J Polym Sci Part A 55:2397–2407

    Article  CAS  Google Scholar 

  93. Gao J, Zhu D, Zhang W, Solan GA, Ma Y, Sun WH (2019) Recent progress in the application of group 1, 2 & 13 metal complexes as catalysts for the ring opening polymerization of cyclic esters. Inorg Chem Front 6:2619–2652

    Article  CAS  Google Scholar 

  94. Redshaw C (2017) Use of metal catalysts bearing Schiff base macrocycles for the ring opening polymerization (ROP) of cyclic esters. Catalysts 7:165

    Article  CAS  Google Scholar 

  95. Tian J, Zhang W (2019) Synthesis, self-assembly and applications of functional polymers based on porphyrins. Prog Polym Sci 95:65–117

    Article  CAS  Google Scholar 

  96. Dagorne S, Normand M, Kirillov E, Carpentier JF (2013) Gallium and indium complexes for ring-opening polymerization of cyclic ethers, esters and carbonates. Coord Chem Rev 257:1869–1886

    Article  CAS  Google Scholar 

  97. Osten KM, Mehrkhodavandi P (2017) Indium catalysts for ring opening polymerization: exploring the importance of catalyst aggregation. Acc Chem Res 50:2861–2869

    Article  CAS  PubMed  Google Scholar 

  98. Kremer AB, Mehrkhodavandi P (2019) Dinuclear catalysts for the ring opening polymerization of lactide. Coord Chem Rev 380:35–57

    Article  CAS  Google Scholar 

  99. Thevenon A, Cyriac A, Myers D, White AJ, Durr CB, Williams CK (2018) Indium catalysts for low-pressure CO2/epoxide ring-opening copolymerization: evidence for a mononuclear mechanism. J Am Chem Soc 140:6893–6903

    Article  CAS  PubMed  Google Scholar 

  100. Ghosh S, Gowda RR, Jagan R, Chakraborty D (2015) Gallium and indium complexes containing the bis (imino) phenoxide ligand: synthesis, structural characterization and polymerization studies. Dalton Trans 44:10410–10422

    Article  CAS  PubMed  Google Scholar 

  101. Lyubov DM, Tolpygin AO, Trifonov AA (2019) Rare-earth metal complexes as catalysts for ring-opening polymerization of cyclic esters. Coord Chem Rev 392:83–145

    Article  CAS  Google Scholar 

  102. Yu C, Zhang L, Shen Z (2003) Ring-opening polymerization of ε-caprolactone using rare earth tris (4-tert-butylphenolate)s as a single component initiator. Eur Polym J 39:2035–2039

    Article  CAS  Google Scholar 

  103. Zhang L, Yu C, Shen Z (2003) Characteristics, kinetics and Mechanism of ε-Caprolactone polymerization by lanthanide tris (2.6-dimethylphenolate)s. Polym Bull 51:47–53

    Article  CAS  Google Scholar 

  104. Zhang L, Niu Y, Wang Y, Wang SL (2008) Ring-opening polymerization of ɛ- caprolactone by lanthanide tris (2, 4, 6-tri-tert-butylphenolate) s: characteristics, kinetics and mechanism. J Mol Catal A 287:1–4

    Article  CAS  Google Scholar 

  105. Guillaume SM, Kirillov E, Sarazin Y, Carpentier JF (2015) Beyond stereoselectivity, switchable catalysis: some of the last frontier challenges in ring-opening polymerization of cyclic esters. Chem Eur J 21:7988–8003

    Article  CAS  PubMed  Google Scholar 

  106. Paul S, Zhu Y, Romain C, Brooks R, Saini PK, Williams CK (2015) Ring-opening copolymerization (ROCOP): synthesis and properties of polyesters and polycarbonates. Chem Commun 51:6459–6479

    Article  CAS  Google Scholar 

  107. Taherimehr M, Sertã JPCC, Kleij AW, Whiteoak CJ, Pescarmona PP (2015) New iron pyridylamino-bis (phenolate) catalyst for converting CO2 into cyclic carbonates and cross-linked polycarbonates. ChemSusChem 8:1034–1042

    Article  CAS  PubMed  Google Scholar 

  108. Devaine-Pressing K, Kozak CM (2017) Mechanistic studies of cyclohexene oxide/CO2 copolymerization by a chromium (III) pyridylamine-bis (phenolate) complex. ChemSusChem 10:1266–1273

    Article  CAS  PubMed  Google Scholar 

  109. Ni K, Kozak CM (2018) Kinetic studies of copolymerization of cyclohexene oxide with CO2 by a diamino-bis (phenolate) chromium (III) complex. Inorg Chem 57:3097–3106

    Article  CAS  PubMed  Google Scholar 

  110. Brocas AL, Mantzaridis C, Tunc D, Carlotti S (2013) Polyether synthesis: from activated or metal-free anionic ring-opening polymerization of epoxides to functionalization. Prog Polym Sci 38:845–873

    Article  CAS  Google Scholar 

  111. Kayan A (2019) Copolymerization reactions of butadiene monoxide with 3-glycidyloxypropyltrimethoxysilane and styrene oxide and their glycol derivatives. J Appl Polym Sci 136:47074

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Kocaeli University (Project No. 2017/107)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asgar Kayan.

Ethics declarations

Conflict of interest

The author declares no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayan, A. Recent Studies on Single Site Metal Alkoxide Complexes as Catalysts for Ring Opening Polymerization of Cyclic Compounds. Catal Surv Asia 24, 87–103 (2020). https://doi.org/10.1007/s10563-019-09291-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-019-09291-3

Keywords

Navigation