Role of Cobalt Oxide-Based Catalysts for Styrene Production: A Review on Significance of Various Promoters, Calcination Temperature, Chemical Behavior of Support Materials and Synthesis Procedure

  • Venkata Rao Madduluri
  • Kamaraju Seetha Rama RaoEmail author


The direct CO2 oxidative dehydrogenation of ethyl benzene (ODH-EB) is a great potential for the production of valuable styrene monomer. In contrast, past/present styrene (ST) synthesis is mainly obtained from oxidative dehydrogenation of ethyl benzene (EB) and being transformed into pilot scale under CO2 atmosphere. It was due to few unresolved restrictions existed in the synthesis of styrene monomer using the steam assisted process and commercial ST production technology. These problems are being rectified by ODH-EB process using CO2 as a soft oxidant. Therefore, ODH of EB is well-known high temperature process to convert the EB (petroleum by product) into valuable ST monomer through the utilizing of CO2. Present study clearly explains the concise history of dehydrogenation process used to convert EB to ST monomer, which is essential feedstock in the wide range of industrial commodities production. In this discussion we majorly devoted to design, development and synthesis of different Co based catalysts by applying different support materials such as SiO2, MgO, MgAl2O4 and γ-Al2O3 respectively. Moreover, this study extensively deals with chemical behavior of oxidants, utilization of viable active promoters and its characteristics features in the oxidative dehydrogenation process. Different reaction mechanisms in the ODH of EB process to describe CO2 utilization as well as surface styrene monomer formation and evaluation of other by products were discussed widely in this review paper. The surface acidic and basic chemistry of various support materials, its preparation, utilization and its catalytic activity applications have been discussed. Acidic–basic textural properties of different solid oxide support materials have been extensively illustrated through incorporation of variety active metallic oxide and promoters. The catalyst activity evaluation in ODH of EB process as well as plausible reaction mechanism of styrene monomer formation has been explained.

Graphic Abstract


Oxidative dehydrogenation Ethyl benzene Styrene Soft oxidant CO2 



Oxidative dehydrogenation


Ethyl benzene








Reverse water gas shift reaction

Dehydrogenation oxidants

N2, He and Ar

Soft oxidants

CO2, O2, N2O and SO2


Water vapor
















12-Centrum voor Oppervlaktechemie & Katalyse


X denotes the calcination temperature of MgAl2O4 spinel like 600MA, 700MA, 800MA and 900MA respectively



The author, MVR is grateful to the University Grants Commission and Council of Scientific and Industrial Research, New Delhi, India respectively for the award of fellowship and the services provided by the Analytical Division; CSIR-IICT is greatly acknowledged.


  1. 1.
    Cavani F, Trifiro F (1995) Appl Catal A Gen 133:219–239CrossRefGoogle Scholar
  2. 2.
    Product Focus: Styrene (2002) Chem Week 15:36Google Scholar
  3. 3.
    Profile Chemical (2001) Propylene glycol. Chem Mark Rep 249:37Google Scholar
  4. 4.
    James DH, Castor WM (1994) Styrene. In: Campbell FT, Pfefferkorn R, Rounsaville JF (eds) Ullmann’s encyclopedia of industrial chemistry, vol 25. Wiley-VCH, Weinheim, p 329Google Scholar
  5. 5.
    Kerby KK (1945) US Patent 2,370,797Google Scholar
  6. 6.
    Sundaram KM, Sardina H, Fernandez-Baujin JM, Hildreth JM (1991) Styrene Plant Simul Optim Hydrocarbon Process 70:93Google Scholar
  7. 7.
    Kolios G, Eigenberger G (1999) Chem Eng Sci 54:2637–2646CrossRefGoogle Scholar
  8. 8.
    Savoretti AA, Borio DO, Bucala V, Porras JA (1999) Chem Eng Sci 54:205–213CrossRefGoogle Scholar
  9. 9.
    Yee AKY, Ray AK, Rangaiah GP (2003) Comput Chem Eng 27:111–130CrossRefGoogle Scholar
  10. 10.
    Sheel JGP, Crowe CM (1969) Can J Chem Eng 47:183–196CrossRefGoogle Scholar
  11. 11.
    Clough DE, Ramirez WF (1976) AIChE J 22:1097CrossRefGoogle Scholar
  12. 12.
    Lee EH (1973) Catal Rev 8:285–305CrossRefGoogle Scholar
  13. 13.
    Mohd Bismillah A, Park SE (2012) Energy Environ Sci 5:9419–9437CrossRefGoogle Scholar
  14. 14.
    Yasuo O, Takashi A, Satoshi T, Naoto T (2003) Energy Fuels 17:804–809CrossRefGoogle Scholar
  15. 15.
    Abdullah I, All H, Ebrahim Vasheghani F, Kambiz S (2007) J Nat Gas Chem 16:115–120CrossRefGoogle Scholar
  16. 16.
    Márton K, AdrianaDe S, Hanna ES, Magdolna RM, József V, Anthony AGT (2010) J Mol Catal A: Chem 333:37–45CrossRefGoogle Scholar
  17. 17.
    David V, Freek K, John N (2012) Ruud van Ommen. J Catal Sci Technol 2:1221–1233CrossRefGoogle Scholar
  18. 18.
    Mohsen M, Hossein A, Ali AM, Masoud K (2012) J Thermodyn Catal 3(2):1–6. CrossRefGoogle Scholar
  19. 19.
    Eddie M, John MV (2012) J Catal 291:79–86CrossRefGoogle Scholar
  20. 20.
    Hyuntae S, Umit SO (2016) Energy Fuels 30:5309–5322CrossRefGoogle Scholar
  21. 21.
    Moronta A, Troconis ME, Gonzalez E, Moran C, Sanchez J, Gonzalez A, Quinonez J (2006) Appl Catal A Gen 310:199–204CrossRefGoogle Scholar
  22. 22.
    Gonzáleza E, Moronta A (2004) Appl Catal A Gen 258:99–105CrossRefGoogle Scholar
  23. 23.
    Braga TP, Campos Sales BM, Pinheiro AN, Herrera WT, Saitovitchb B, Valentini A (2011) Catal Sci Technol 1:1383–1392CrossRefGoogle Scholar
  24. 24.
    Madhavi J, Suresh M, Ramesh Babu GV, Sai Prasad PS, David Raju B, Rama-Rao KS (2014) J CO2 Util 8:21–26CrossRefGoogle Scholar
  25. 25.
    Ramudu P, Anand N, Mohan V, Muralidhar G, Sai Prasad PS, David Raju B, Rama Rao KS (2015) J Chem Sci 127:701–709CrossRefGoogle Scholar
  26. 26.
    Xiao FG, Joong HK, Geon JK (2011) Catal Today 164:336–340CrossRefGoogle Scholar
  27. 27.
    Xingnan Y, Yinghong Y, Changxi M, Zaiku X, Weiming H, Zi G (2005) Green Chem 7:524–528CrossRefGoogle Scholar
  28. 28.
    Mimuraa N, Takaharaa I, Saitoa M, Hattorib T, Ohkumac K, Andod M (1998) Stud Surf Sci Catal 114:415–418CrossRefGoogle Scholar
  29. 29.
    David Raju B, Kwang Min C, Dae-Soo H, Jeong-Boon K, Park SE (2006) Catal Today 115:242–247CrossRefGoogle Scholar
  30. 30.
    Li Z, Zili W, Nicholas CN, Aaron DS, Igor IS, Steven HO (2015) ACS Catal 5:6426–6435CrossRefGoogle Scholar
  31. 31.
    Engaldas H, Vanama Pavan K, Kuna R, Komandur VRC, Vattikonda VR (2015) Appl Petrochem Res 5:71–80CrossRefGoogle Scholar
  32. 32.
    Toshimitsu S, Kiyoharu N (2011) J Jpn Pet Inst 54:66–79CrossRefGoogle Scholar
  33. 33.
    Rao KN, Reddy BM, Abhishek B, Yeong-Hui S, Nanzhe J, Sang-Eon P (2009) Appl Catal B Environ 91:649–656CrossRefGoogle Scholar
  34. 34.
    Reddy BM, Rao KN, Reddy GK, Khan A, Park SE (2007) J Phys Chem C 111:18751–18758CrossRefGoogle Scholar
  35. 35.
    Liu BS, Chang RZ, Jiang L, Liu W, Au CT (2008) J Phy Chem C 112:15490–15501CrossRefGoogle Scholar
  36. 36.
    Venugopal AK, Venugopalan AT, Kaliyappan P, Swamy Raja T (2013) Green Chem 15:3259–3267CrossRefGoogle Scholar
  37. 37.
    Coulter K, Goodman DW, Moore RG (1995) Catal Lett 31:1–8CrossRefGoogle Scholar
  38. 38.
    Sionnest PG (2007) Mater Matters 2:10Google Scholar
  39. 39.
    Chestnoy N, Hull R, Brus LE (1986) J Phys Chem 85:2237CrossRefGoogle Scholar
  40. 40.
    Somorjai GA, Rioux RM (2005) Catal Today 100:201CrossRefGoogle Scholar
  41. 41.
    Anastas PT, Williamson TC (eds) (1998) Green chemistry: frontiers in chemical synthesis and processes. Oxford University Press, OxfordGoogle Scholar
  42. 42.
    Zalesskiy S, Ananikov V (2012) Organometallics 31:2302–2309CrossRefGoogle Scholar
  43. 43.
    Astruc D (ed) Nanoparticles and catalysis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, p 621Google Scholar
  44. 44.
    Anastas PT, Kirchhoff MM (2002) Acc Chem Res 35:686–694CrossRefPubMedGoogle Scholar
  45. 45.
    Shaikhutdinov SK, Joseph Y, Kuhrs C, Ranke W, Weiss W (1999) Faraday Discuss 114:363CrossRefGoogle Scholar
  46. 46.
    Anastas PT, Heine LG, Williamson TC (eds) (2000) Green chemical syntheses and processes. American Chemical Society, Washington DCGoogle Scholar
  47. 47.
    Kuhrs C, Swoboda M, Weiss W (2001) Top Catal 15:13CrossRefGoogle Scholar
  48. 48.
    Anastas PT, Farris CA (eds) (1994) Benign by design: alternative synthetic design for pollution prevention. ACS symposium series, vol 577. American Chemical Society, Washington DCGoogle Scholar
  49. 49.
    Emig G, Hofmann H (1983) J Catal 84:15–26CrossRefGoogle Scholar
  50. 50.
    Mross WD (1983) Catal Rev Sci Eng 25:17CrossRefGoogle Scholar
  51. 51.
    Dellinger PW, Moore RG, Sherrod FA, Smith AR (1996) US Patent 5,510,552Google Scholar
  52. 52.
    Rase HF (2000) Handbook of commercial catalysts: heterogeneous catalysts. CRC Press, Boca RatonGoogle Scholar
  53. 53.
    Nicolás MB, Carlos RA, Alberto JM (2008) Catal Commun 10:261–265CrossRefGoogle Scholar
  54. 54.
    Nazmul AK, Jin-Soo H, Sung HJ (2011) Bull Korean Chem Soc 32:1327–1330CrossRefGoogle Scholar
  55. 55.
    Nicolás MB, Andrés FT, Carlos RA, Alberto JM (2013) Appl Catal A Gen 458:28–38CrossRefGoogle Scholar
  56. 56.
    Lange JP, Mesters CMAM (2001) Appl Catal A Gen 210:247–255CrossRefGoogle Scholar
  57. 57.
    Jean-Paul L, Vincent O (2006) J Catal 238:6–12CrossRefGoogle Scholar
  58. 58.
    Mimuraa N, Takaharaa I, Saitoa M, Hattorib T, Ohkumac K, Andod M (1998) Catal Today 45:61–64CrossRefGoogle Scholar
  59. 59.
    Venkata Rao M, Venkateshwarlu V, Thirupathaiah K, Ashok Raju M, Nagaiah P, Murali K, David Raju B, Rama Rao KS (2017) Arab J Chem. CrossRefGoogle Scholar
  60. 60.
    Kumarsrinivasan S, Akrati V, Chinnakonda SG (2012) Green Chem 14:461–471CrossRefGoogle Scholar
  61. 61.
    Kustrowski P, Segura Y, Chmielarz L, Surman J, Dziembaj R, Cool P (2006) Catal Today 114:307–313CrossRefGoogle Scholar
  62. 62.
    Gaspar NI, Cohen Vadekar AD, Pasternak IS (1975) Can J Chem Eng 53:79–82CrossRefGoogle Scholar
  63. 63.
    Jean-Paul L, Vincent O (2007) Ind Eng Chem Res 46:6899–6903CrossRefGoogle Scholar
  64. 64.
    Addiego WP, Liu W, Boger T (2001) Catal Today 69:25–31CrossRefGoogle Scholar
  65. 65.
    Mitchell JE Jr (1946) Trans Am Inst Chem Eng 42:293–308Google Scholar
  66. 66.
    Venkata Rao M, Peddinti N, Challa P, Vasikarappa K, Ajmeera N, Burri David R, Rama Rao KS (2018) Arab J Chem. CrossRefGoogle Scholar
  67. 67.
    Christian N, Valeriya Z, Ignacio MC, Hero JH, Freek K, Michiel M (2013) Catal Sci Technol 3:519–526CrossRefGoogle Scholar
  68. 68.
    Chiou JYZ, Yang SY, Lai CL, Kung HY, Tang CW, Wang CB (2013) Mod Res Catal 2:13–21CrossRefGoogle Scholar
  69. 69.
    Brabant C, Khodakov A, Constant AG (2017) C R Chim 20:40–46CrossRefGoogle Scholar
  70. 70.
    Jongsomjit B, Panpranot J, Goodwin JG (2001) J Catal 204:98–109CrossRefGoogle Scholar
  71. 71.
    Zhang NW, Huang CJ, Zhu XQ, Xu JD, Weng WZ, Wan HL (2012) Chemistry 7:1895–1901Google Scholar
  72. 72.
    Caia Z, Lia J, Liewb K, Hua J (2010) J Mol Catal A: Chem 330:10–17CrossRefGoogle Scholar
  73. 73.
    Song H, Zhang L, Ozkan US (2007) Green Chem 9:686–694CrossRefGoogle Scholar
  74. 74.
    Batista MS, Santos RKS, Assaf EM, Assaf JM, Ticianelli EA (2004) J Power Sources 134:27–32CrossRefGoogle Scholar
  75. 75.
    Taghavimoghaddam J, Knowles GP, Chaffee AL (2012) J Mol Catal A: Chem 358:79–88CrossRefGoogle Scholar
  76. 76.
    Guo J, Lou H, Zhao H, Wang X, Zheng X (2004) Mater Lett 58:1920–1923CrossRefGoogle Scholar
  77. 77.
    Chandradass J, Ki Hyeon K (2010) J Ceram Process Res 11:96–99Google Scholar
  78. 78.
    Mostafa YN, Ibrahim SA, Ihab S (2014) Spectrochim Acta Part A Mol Biomol Spectrosc 131:329–334CrossRefGoogle Scholar
  79. 79.
    Chang JS, Vislovskiy VP, Park MS, Hong DY, Yoo JS, Park SE (2003) Green Chem 5:587–590CrossRefGoogle Scholar
  80. 80.
    David Raju B, Choi KM, Han SC, Abhishek B, Park SE (2007) J Mol Catal A: Chem 269:58–63CrossRefGoogle Scholar
  81. 81.
    Hong DY, Vislovsky VP, Park SE, Park MS, Yoo JS, Chang JS (2005) Bull Korean Chem Soc 26:1743–1748CrossRefGoogle Scholar
  82. 82.
    Reddy BM, Lee SC, Han DS, Park SE (2009) Appl Catal B Environ 87:230–238CrossRefGoogle Scholar
  83. 83.
    David Raju B, Choi KM, Lee JH, Han DS, Park SE (2007) Catal Commun 8:43–48CrossRefGoogle Scholar
  84. 84.
    Mohan V, Pramod CV, Suresh M (2012) Hari Prasad Reddy K, David Raju B, Rama Rao KS. Catal Commun 18:89–92CrossRefGoogle Scholar
  85. 85.
    Navaei Alvar E, Rezaei M, Navaei Alvar H, Feyzallahzadeh H (2009) Yan ZF 196. Chem Eng Commun 196:1417–1424CrossRefGoogle Scholar
  86. 86.
    Xingnan Y, Ning M, Weiming H, Yinghong Y, Changxi M, Zaiku X, Zi G (2004) J Mol Catal A: Chem 217:103–108CrossRefGoogle Scholar
  87. 87.
    Balkrishna BT, Rabindran JB, Alam K, Luqman AA, Hidenori Y, Tetsuya S, Katsuomi T, Sulaiman SA (2011) Appl Catal A Gen 407:118–126CrossRefGoogle Scholar
  88. 88.
    Ye X, Hua W, Yue Y, Dai W, Miao C, Xie Z, Gao Z (2004) N J Chem 28:373–378CrossRefGoogle Scholar
  89. 89.
    Sun A, Qin Z, Chen S, Wang J (2004) J Mol Catal A: Chem 210:189–195CrossRefGoogle Scholar
  90. 90.
    Mathew T, Malwadkar S, Pai S, Sharanappa N, Peter Sebastian C, Satyanarayana CVV, Bokade VV (2003) Catal Lett 91:217–224CrossRefGoogle Scholar
  91. 91.
    Geisler S, Vauthey I, Farusseng D, Zanthoff H, Muhler M (2003) Catal Today 81:413–424CrossRefGoogle Scholar
  92. 92.
    Carja G, Nakamura R, Aida T, Niiyama H (2003) J Catal 218:104–110CrossRefGoogle Scholar
  93. 93.
    Sun A, Qin Z, Wang J (2002) Appl Catal A Gen 234:179–189CrossRefGoogle Scholar
  94. 94.
    Arishtirova K, Kovacheva P, Predoeva A (2003) Appl Catal A Gen 243:191–196CrossRefGoogle Scholar
  95. 95.
    Saito M, Kimura H, Mimura N, Wu J, Murata K (2003) Appl Catal A Gen 239:71–77CrossRefGoogle Scholar
  96. 96.
    Huerta L, Meyer A, Choren E (2003) Microporous Mesoporous Mater 57:219–227CrossRefGoogle Scholar
  97. 97.
    Bispo JRC, Oliveira AC, Correa MLS, Fierro JLG, Marchetti SG, Rangel MC (2002) Studies in surface science and catalysis, vol 142. Elsevier, Amsterdam, pp 517–524Google Scholar
  98. 98.
    Keller N, Maksimova NI, Roddatis VV, Schur M, Mestl G, Butenko YV, Kuznetsov VL, Schlogl R (2002) Angew Chem Int Ed 41:1885–1888CrossRefGoogle Scholar
  99. 99.
    Assabumrungrat S, Suksomboon K, Praserthdam P, Tagawa T, Goto S (2002) J Chem Eng Jpn 35:263–273CrossRefGoogle Scholar
  100. 100.
    Miyakoshi A, Ueno A, Ichikawa M (2001) Appl Catal A Gen 219:249–258CrossRefGoogle Scholar
  101. 101.
    Surman J, Majda D, Rafalska LA, Kustrowski P, Chmielarz L, Dziembaj R (2001) J Therm Anal Calorim 65:445–450CrossRefGoogle Scholar
  102. 102.
    Kong C, Lu J, Yang J, Wang J (2007) J Membr Sci 306:29–35CrossRefGoogle Scholar
  103. 103.
    Delgado JJ, Chen XW, Su DS, Hamid Sharifah BA, Schloegl R (2007) J Nanosci Nanotechnol 7:3495–3501CrossRefPubMedGoogle Scholar
  104. 104.
    Su D, Maksimova NI, Mestl G, Kuznetsov VL, Keller V, Schloegl R, Keller N (2007) Carbon 45:2145–2151CrossRefGoogle Scholar
  105. 105.
    Wang L, Zhang J, Su Dang S, Ji Y, Cao X, Xiao FS (2007) Chem Mater 19:2894–2897CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Venkata Rao Madduluri
    • 1
  • Kamaraju Seetha Rama Rao
    • 1
    Email author
  1. 1.Catalysis & Fine Chemicals DivisionCSIR-Indian Institute of Chemical TechnologyHyderabadIndia

Personalised recommendations