Catalysis Surveys from Asia

, Volume 20, Issue 4, pp 195–209 | Cite as

Catalytic Conversion of Macroalgae-derived Alginate to Useful Chemicals

  • Wonjin Jeon
  • Chunghyeon Ban
  • Geonu Park
  • Jeong Eun Kim
  • Hee Chul Woo
  • Do Heui Kim
Article
  • 255 Downloads

Abstract

Alginate, a main carbohydrate compound of macroalgae, can be hydrothermally converted to valuable organic products, such as furfural and organic acids, over various types of catalysts. In this review, alginate is evaluated as a renewable biomass feedstock for the production of the useful chemicals, based on the structural differences between alginate and conventional lignocellulosic biomass feedstocks. The influence of different catalysts and reaction conditions on the alginate depolymerization and the product distribution is discussed. Finally, future research direction for the catalytic conversion of alginate is suggested.

Keywords

Marine biomass Alginate Hydrothermal reaction Homogeneous catalysis Heterogeneous catalysis 

References

  1. 1.
    Kerton FM, Liu Y, Omari KW, Hawboldt K (2013) Green Chem 15:860–871CrossRefGoogle Scholar
  2. 2.
    Williams PJlB, Laurens LML (2010) Energ Environ Sci 3:554–590CrossRefGoogle Scholar
  3. 3.
    Gao K, McKinley K (1994) J Appl Phycol 6:45–60CrossRefGoogle Scholar
  4. 4.
    Bixler HJ, Porse H (2011) J Appl Phycol 23:321–335CrossRefGoogle Scholar
  5. 5.
    Takeda H, Yoneyama F, Kawai S, Hashimoto W, Murata K (2011) Energ Environ Sci 4:2575–2581CrossRefGoogle Scholar
  6. 6.
    Wargacki AJ, Leonard E, Win MN, Regitsky DD, Santos CNS, Kim PB, Cooper SR, Raisner RM, Herman A, Sivitz AB, Lakshmanaswamy A, Kashiyama Y, Baker D, Yoshikuni Y (2012) Science 335:308–313CrossRefGoogle Scholar
  7. 7.
    Wei N, Quarterman J, Jin Y-S (2013) Trends Biotechnol 31:70–77CrossRefGoogle Scholar
  8. 8.
    Coelho MS, Barbosa FG, Souza MRAZ (2014) Algal Res 6(Part B):132–138CrossRefGoogle Scholar
  9. 9.
    Pham HD, Seon J, Lee SC, Song M, Woo H-C (2013) Bioresour Technol 148:601–604CrossRefGoogle Scholar
  10. 10.
    Seon J, Lee T, Lee SC, Pham HD, Woo HC, Song M (2014) Bioresour Technol 157:22–27CrossRefGoogle Scholar
  11. 11.
    Bae YJ, Ryu C, Jeon J-K, Park J, Suh DJ, Suh Y-W, Chang D, Park Y-K (2011) Bioresour Technol 102:3512–3520CrossRefGoogle Scholar
  12. 12.
    Yanik J, Stahl R, Troeger N, Sinag A (2013) J Anal Appl Pyrolysis 103:134–141CrossRefGoogle Scholar
  13. 13.
    Möller M, Nilges P, Harnisch F, Schröder U (2011) ChemSusChem 4:566–579CrossRefGoogle Scholar
  14. 14.
    Toor SS, Rosendahl L, Rudolf A (2011) Energy 36:2328–2342CrossRefGoogle Scholar
  15. 15.
    Takagaki A, Nishimura S, Ebitani K (2012) Catal Surv Asia 16:164–182CrossRefGoogle Scholar
  16. 16.
    Agirrezabal-Telleria I, Gandarias I, Arias PL (2014) Catal Today 234:42–58CrossRefGoogle Scholar
  17. 17.
    Sánchez C, Egüés I, García A, Llano-Ponte R, Labidi J (2012) Chem Eng J 181–182:655–660CrossRefGoogle Scholar
  18. 18.
    Muranaka Y, Iwai A, Hasegawa I, Mae K (2013) Chem Eng J 234:189–194CrossRefGoogle Scholar
  19. 19.
    Xing R, Qi W, Huber GW (2011) Energ Environ Sci 4:2193–2205CrossRefGoogle Scholar
  20. 20.
    Aida TM, Yamagata T, Abe C, Kawanami H, Watanabe M, Smith RL (2012) J Supercrit Fluids 65:39–44CrossRefGoogle Scholar
  21. 21.
    Niemelä K, Sjöström E (1985) Carbohydr Res 144:241–249CrossRefGoogle Scholar
  22. 22.
    Haug A, Larsen B, Smidsrod O (1974) Carbohydr Res 32:217–225CrossRefGoogle Scholar
  23. 23.
    Whistler RL, BeMiller JN (1960) J Am Chem Soc 82:457–459CrossRefGoogle Scholar
  24. 24.
    Haug A, Larsen B (1962) Acta Chem Scand 16:1908–1918CrossRefGoogle Scholar
  25. 25.
    Arne Haug BLaOS (1963) Acta Chem Scand 17:1466–1468CrossRefGoogle Scholar
  26. 26.
    Grasdalen H, Larsen B, Smidsrød O (1979) Carbohydr Res 68:23CrossRefGoogle Scholar
  27. 27.
    Niemela K, Sjostrom E (1985) Carbohydr Res 144:241–249CrossRefGoogle Scholar
  28. 28.
    Knežević D, van Swaaij WPM, Kersten SRA (2009) Ind Eng Chem Res 48:4731–4743CrossRefGoogle Scholar
  29. 29.
    Aida TM, Yamagata T, Watanabe M, Smith RL (2010) Carbohydr Polym 80:296–302CrossRefGoogle Scholar
  30. 30.
    Archer DG, Wang P (1990) J Phys Chem Ref Data 19:371CrossRefGoogle Scholar
  31. 31.
    Matsushima K, Minoshima H, Kawanami H, Ikushima Y, Nishizawa M, Kawamukai A, Hara K (2005) Ind Eng Chem Res 44:9626–9630CrossRefGoogle Scholar
  32. 32.
    Sasaki M, Kabyemela B, Malaluan R, Hirose S, Takeda N, Adschiri T, Arai K (1998) J Supercrit Fluid 13:261–268CrossRefGoogle Scholar
  33. 33.
    Mok WS, Antal MJ, Varhegyi G (1992) Ind Eng Chem Res 31:94–100CrossRefGoogle Scholar
  34. 34.
    Ehara K, Saka S (2005) J Wood Sci 51:148–153CrossRefGoogle Scholar
  35. 35.
    Sasaki M, Goto K, Tajima K, Adschiri T, Arai K (2002) Green Chem 4:285–287CrossRefGoogle Scholar
  36. 36.
    Kabyemela BM, Adschiri T, Malaluan RM, Arai K (1999) Ind Eng Chem Res 38:2888–2895CrossRefGoogle Scholar
  37. 37.
    Kabyemela BM, Adschiri T, Malaluan RM, Arai K (1997) Ind Eng Chem Res 36:1552–1558CrossRefGoogle Scholar
  38. 38.
    Jin FM, Yun J, Li GM, Kishita A, Tohji K, Enomoto H (2008) Green Chem 10:612–615CrossRefGoogle Scholar
  39. 39.
    Watanabe M, Aizawa Y, Iida T, Aida TM, Levy C, Sue K, Inomata H (2005) Carbohydr Res 340:1925–1930CrossRefGoogle Scholar
  40. 40.
    Klingler D, Vogel H (2010) J Supercrit Fluids 55:259–270CrossRefGoogle Scholar
  41. 41.
    Takagaki A, Ohara M, Nishimura S, Ebitani K (2009) Chem Commun 6276–6278Google Scholar
  42. 42.
    Wang Y, Tong X, Yan Y, Xue S, Zhang Y (2014) Catal Commun 50:38–43CrossRefGoogle Scholar
  43. 43.
    Yan L, Liu N, Wang Y, Machida H, Qi X (2014) Bioresour TechnolGoogle Scholar
  44. 44.
    Kong L, Li G, Wang H, He W, Ling F (2008) J Chem Technol Biotechnol 83:383–388CrossRefGoogle Scholar
  45. 45.
    Esposito D, Antonietti M (2013) ChemSusChem 6:989–992CrossRefGoogle Scholar
  46. 46.
    Huo Z, Fang Y, Ren D, Zhang S, Yao G, Zeng X, Jin F (2014) ACS Sustain Chem Eng 2:2765–2771CrossRefGoogle Scholar
  47. 47.
    Jeon W, Ban C, Park G, Yu T-K, Suh J-Y, Woo HC, Kim DH (2015) J Mol Catal A Chem 399:106–113CrossRefGoogle Scholar
  48. 48.
    Mäki-Arvela P, Simakova IL, Salmi T, Murzin DY (2014) Chem Rev 114:1909–1971CrossRefGoogle Scholar
  49. 49.
    Agirrezabal-Telleria I, Requies J, Güemez MB, Arias PL (2014) Appl Catal B 145:34–42CrossRefGoogle Scholar
  50. 50.
    Bhaumik P, Dhepe PL (2014) RSC Adv 4:26215–26221CrossRefGoogle Scholar
  51. 51.
    Kobayashi S, Manabe K (2002) Acc Chem Res 35:209–217CrossRefGoogle Scholar
  52. 52.
    Wang N, Zhang J, Wang H, Li Q, Wei Sa, Wang D (2014) Bioresour Technol 173:399–405CrossRefGoogle Scholar
  53. 53.
    Jeon W, Ban C, Park G, Woo HC, Kim DH (2016) Catal Today 265:154–162CrossRefGoogle Scholar
  54. 54.
    Tanaka K-I, Ozaki A (1967) J Catal 8:1–7CrossRefGoogle Scholar
  55. 55.
    Wang Y, Deng W, Wang B, Zhang Q, Wan X, Tang Z, Wang Y, Zhu C, Cao Z, Wang G, Wan H (2013) Nat Commun 4:1–7CrossRefGoogle Scholar
  56. 56.
    Arne Haug BL, Olav Smidsrød (1966) Acta Chem Scand 20:8Google Scholar
  57. 57.
    Choudhary V, Sandler SI, Vlachos DG (2012) ACS Catal 2:2022–2028CrossRefGoogle Scholar
  58. 58.
    Lai D-m, Deng L, Li J, Liao B, Guo Q-x, Fu Y (2011) ChemSusChem 4:55–58CrossRefGoogle Scholar
  59. 59.
    Gliozzi G, Innorta A, Mancini A, Bortolo R, Perego C, Ricci M, Cavani F (2014) Appl Catal B 145:24–33CrossRefGoogle Scholar
  60. 60.
    Pang J, Wang A, Zheng M, Zhang T (2010) Chem Commun (Camb) 46:6935–6937CrossRefGoogle Scholar
  61. 61.
    Van de Vyver S, Peng L, Geboers J, Schepers H, de Clippel F, Gommes CJ, Goderis B, Jacobs PA, Sels BF (2010) Green Chem 12:1560CrossRefGoogle Scholar
  62. 62.
    Zhou L, Liu Z, Shi M, Du S, Su Y, Yang X, Xu J (2013) Carbohydr Polym 98:146–151CrossRefGoogle Scholar
  63. 63.
    Takagaki A, Takahashi M, Nishimura S, Ebitani K (2011) ACS Catal 1:1562–1565CrossRefGoogle Scholar
  64. 64.
    Onda A, Ochi T, Yanagisawa K (2008) Green Chem 10:1033–1037CrossRefGoogle Scholar
  65. 65.
    Onda A, Ochi T, Yanagisawa K (2009) Top Catal 52:801–807CrossRefGoogle Scholar
  66. 66.
    Van de Vyver S, Thomas J, Geboers J, Keyzer S, Smet M, Dehaen W, Jacobs PA, Sels BF (2011) Energ Environ Sci 4:3601–3610CrossRefGoogle Scholar
  67. 67.
    Ko S, Yao C-F (2006) Tetrahedron Lett 47:8827–8829CrossRefGoogle Scholar
  68. 68.
    Liu T, Li Z, Li W, Shi C, Wang Y (2013) Bioresour Technol 133:618–621CrossRefGoogle Scholar
  69. 69.
    Dias AS, Pillinger M, Valente AA (2005) J Catal 229:414–423CrossRefGoogle Scholar
  70. 70.
    Jeon W, Ban C, Kim JE, Woo HC, Kim DH (2016) J Mol Catal A Chem 423:264–269CrossRefGoogle Scholar
  71. 71.
    Hayes DJ, Fitzpatrick S, Hayes MHB, Ross JRH (2008) The biofine process: production of levulinic acid, furfural, and formic acid from lignocellulosic feedstocks, biorefineries-industrial processes and products. Wiley-VCH, New York, pp 139–164Google Scholar
  72. 72.
    Furuta S, Matsuhashi H, Arata K (2006) Biomass Bioenerg 30:870–873CrossRefGoogle Scholar
  73. 73.
    López DE, Goodwin JG Jr, Bruce DA, Furuta S (2008) Appl Catal A 339:76–83CrossRefGoogle Scholar
  74. 74.
    Kim M, DiMaggio C, Salley SO, Simon Ng KY (2012) Bioresour Technol 118:37–42CrossRefGoogle Scholar
  75. 75.
    Kouzu M, Kasuno T, Tajika M, Sugimoto Y, Yamanaka S, Hidaka J (2008) Fuel 87:2798–2806CrossRefGoogle Scholar
  76. 76.
    Liu X, He H, Wang Y, Zhu S, Piao X (2008) Fuel 87:216–221CrossRefGoogle Scholar
  77. 77.
    Onda A, Ochi T, Kajiyoshi K, Yanagisawa K (2008) Catal Commun 9:1050–1053CrossRefGoogle Scholar
  78. 78.
    Chareonlimkun A, Champreda V, Shotipruk A, Laosiripojana N (2010) Bioresour Technol 101:4179–4186CrossRefGoogle Scholar
  79. 79.
    Jeon W, Ban C, Park G, Woo HC, Kim DH (2016) Catal Sci Technol 6:1146–1156CrossRefGoogle Scholar
  80. 80.
    Mellmer MA, Sener C, Gallo JM, Luterbacher JS, Alonso DM, Dumesic JA (2014) Angew Chem Int Ed 53:11872–11875CrossRefGoogle Scholar
  81. 81.
    Hu X, Westerhof RJM, Dong D, Wu L, Li C-Z (2014) ACS Sustain Chem Eng 2:2562–2575CrossRefGoogle Scholar
  82. 82.
    Cai CM, Zhang T, Kumar R, Wyman CE (2013) Green Chem 15:3140–3145CrossRefGoogle Scholar
  83. 83.
    Weingarten R, Rodriguez-Beuerman A, Cao F, Luterbacher JS, Alonso DM, Dumesic JA, Huber GW (2014) ChemCatChem 6:2229–2234CrossRefGoogle Scholar
  84. 84.
    Park G, Jeon W, Ban C, Woo HC, Kim DH (2016) Energy Convers Manage 118:135–141CrossRefGoogle Scholar
  85. 85.
    Marsh CA (1966) In: Dutton G (ed) Glucuronic acid free and combined: chemistry, biochemistry, pharmacology and medicine. Academic Press, New York, pp 4–119Google Scholar
  86. 86.
    Beljanin ML, Goldberg ED, Dygai AM, Filimonov VD, Khazanov VA (2009) US patent: method of obtainging d-glucuronic acid, U.S.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Wonjin Jeon
    • 1
  • Chunghyeon Ban
    • 1
  • Geonu Park
    • 1
  • Jeong Eun Kim
    • 1
  • Hee Chul Woo
    • 2
  • Do Heui Kim
    • 1
  1. 1.School of Chemical and Biological Engineering, Institute of Chemical ProcessesSeoul National UniversitySeoulRepublic of Korea
  2. 2.Department of Chemical EngineeringPukyong National UniversityBusanRepublic of Korea

Personalised recommendations