Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Recent Advances in the Preferential Thermal-/Photo-Oxidation of Carbon Monoxide: Noble Versus Inexpensive Metals and Their Reaction Mechanisms

  • 594 Accesses

  • 6 Citations

Abstract

Preferential oxidation (PROX) of CO is applicable because of its low cost, ease of implementation, and low loss of H2 during purification. Mo–SiO2 and Cr–SiO2 photocatalysts utilized charge separation at metal=O bonds, and the PROX selectivity of CO was high. The CO PROX rates using semiconductor-based photocatalysts were comparable to those of photocatalysts (380 μmol h−1 g cat −1 ) and were also selective (100 %). These photocatalysts are advantageous because they do not activate H2 in comparison to noble metal catalysts. Below 473 K using noble metals, Ru, Rh, Pt, or Au supported on reducible metal oxides exhibited excellent CO thermal-PROX rates of ~4900 μmol h−1 g cat −1 ; however, the CO PROX selectivity of ~48 % was insufficient because of H2 activation on noble metals in nature. CO adsorbed onto TiO2 and O2 was stabilized at the interface between a Ti site and an Au atom. Weakly adsorbed water increased the effective number of active sites by stabilizing Au–OOH or Au–COOH. The PROX rates of CO using Au/TiO2-based catalysts under dark conditions increased under UV–visible light by the effect of charge separation and surface plasmon resonance and the promoted electron transfer to the adsorbed O2. In the case of CuO–CeO2 catalysts, CO adsorbed onto CuO and reacted with lattice O atoms at the boundary between CuO and CeO2 to form CO2 at an O vacancy, which was subsequently filled with an O2 molecule. The combination of Cu or Co with a reducible metal oxides also provided performance comparable to or higher than that of CuO–CeO2 owing to adequate standard reduction potential for Cu2+, Co3+, Mn3+/4+, and Ce4+. Finally, binary metal–organic framework consisting of oxyhydroxide Ti clusters interlinked by organic ligands and Cu oxyhydroxide ligands showed superior CO PROX performance (76 % conversion and 99 % selectivity) to that achieved using CuO–CeO2 owing to effective dispersion of Cu–O–Ti connection in microporous crystallites. Further progress is needed to alleviate the activity loss in the presence of moisture and/or CO2 based on suggestions that steric hindrance of some types of microporous crystallites would suppress the blocking of moisture or CO2.

Graphical Abstract

This is a preview of subscription content, log in to check access.

Fig. 1

Copyright (2012) Elsevier

Fig. 2

Copyright (1996) American Chemical Society

Fig. 3

Copyright (2015) Elsevier (Color figure online)

Scheme 1

Copyright (2007) Elsevier

Fig. 4

Copyright (2012) Elsevier

Fig. 5

Copyright (2015) American Chemical Society

Scheme 2

Copyright (2015) American Chemical Society

Fig. 6

Copyright (2003) American Association for the Advancement of Science

Scheme 3

Copyright (2011) American Association for the Advancement of Science

Fig. 7

Copyright (2014) American Association for the Advancement of Science (Color figure online)

Fig. 8

Copyright (2002) Elsevier

Scheme 4

Copyright (2015) The Royal Society of Chemistry

Fig. 9

Copyright (2015) Elsevier

Scheme 5
Scheme 6

Copyright (2015) Elsevier

References

  1. 1.

    Schlapbach L (2009) Nature 460:809–811

  2. 2.

    Kraytsberg A, Ein-Eli Y (2014) Energy Fuels 28:7303–7330

  3. 3.

    Izumi Y (2013) Coord Chem Rev 257:171–186

  4. 4.

    Gasteiger HA, Marković NM (2009) Science 324:48–49

  5. 5.

    Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by powders and porous solids—principles, methodology, and applications. Academic Press, London, pp 357–358

  6. 6.

    Lin YM, Rei MH (2001) Sep Purif Technol 25:87–95

  7. 7.

    Cho A (2003) Science 299:1684–1685

  8. 8.

    Park ED, Lee D, Lee HC (2009) Catal Today 139:280–290

  9. 9.

    Bion N, Epron F, Moreno M, Mariño F, Duprez D (2008) Top Catal 51:76–88

  10. 10.

    Lakshmanan P, Park JE, Park ED (2014) Catal Surv Asia 18:75–88

  11. 11.

    Beckers J, Rothenberg G (2010) Green Chem 12:939–948

  12. 12.

    Kudo A, Miseki Y (2009) Chem Soc Rev 38:253–278

  13. 13.

    Izumi Y (2015) Recent advances (2012–2015) in the photocatalytic conversion of carbon dioxide to fuels using solar energy: feasibility for a new energy. In: Jin F, He LN, Hu YH (eds) ACS books advances in CO2 capture, sequestration, and conversion, vol 1194, pp 1–46

  14. 14.

    Yoshida Y, Mitani Y, Itoi T, Izumi Y (2012) J Catal 287:190–202

  15. 15.

    Sato S, White JM (1980) J Am Chem Soc 102:7206–7210

  16. 16.

    Linsebigler A, Lu G, Yates JT Jr (1996) J Phys Chem 100:6631–6636

  17. 17.

    Rosseler O, Ulhaq-Bouillet C, Bonnefont A, Pronkin S, Savinova E, Louvet A, Keller V, Keller N (2015) Appl Catal B 166(167):381–392

  18. 18.

    Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Chem Rev 95:69–96

  19. 19.

    Kamegawa T, Takeuchi R, Matsuoka M, Anpo M (2006) Catal Today 111:248–253

  20. 20.

    Banker G (2010) Introduction to XAFS. Cambridge University Press, Cambridge

  21. 21.

    Matsuoka M, Kamegawa T, Takeuchi R, Anpo M (2007) Catal Today 122:39–45

  22. 22.

    Zhang Y-Z, Zhou B, Zhang X-P, Huang P, Li C-H, Liu Y (2009) J Hazard Mater 163:1345–1352

  23. 23.

    Di Marco G, Lanza M, Mamo A, Stefio I, Pietro CD, Romeo G, Campagna S (1998) Anal Chem 70:5019–5023

  24. 24.

    Matsuoka M, Kamegawa T, Anpo M (2007) Stud Surf Sci Catal 165:725–728

  25. 25.

    Kamegawa T, Morishima J, Matsuoka M, Thomas JM, Anpo M (2007) J Phys Chem C 111:1076–1078

  26. 26.

    Anpo M, Kim T-H, Matsuoka M (2009) Catal Today 142:114–124

  27. 27.

    Kamegawa T, Kim TH, Morishima J, Matsuoka M, Anpo M (2009) Catal Lett 129:7–11

  28. 28.

    Yoshida Y, Itoi T, Izumi Y (2015) J Phys Chem C 119:21585–21598

  29. 29.

    Chen X, Mao SS (2007) Chem Rev 107:2891–2959

  30. 30.

    Izumi Y, Itoi T, Peng S, Oka K, Shibata Y (2009) J Phys Chem C 113:6706–6718

  31. 31.

    Izumi Y, Shibata Y (2009) Chem Lett 38:912–913

  32. 32.

    Izumi Y, Konishi K, Obaid D, Miyajima T, Yoshitake H (2007) Anal Chem 79:6933–6940

  33. 33.

    Izumi Y, Kiyotaki F, Yagi N, Vlaicu AM, Nisawa A, Fukushima S, Yoshitake H, Iwasawa Y (2005) J Phys Chem B 109:14884–14891

  34. 34.

    Masih D, Yoshitake H, Izumi Y (2007) Appl Catal A 325:276–282

  35. 35.

    Pickering IJ, George GN (1995) Inorg Chem 34:3142–3152

  36. 36.

    Solomon EI, Jones PM, May JA (1993) Chem Rev 93:2623–2644

  37. 37.

    Izumi Y, Oyanagi H, Nagamori H (2000) Bull Chem Soc Jpn 73:2017–2023

  38. 38.

    Izumi Y, Nagamori H (2000) Bull Chem Soc Jpn 73:1581–1587

  39. 39.

    Izumi Y, Nagamori H, Kiyotaki F, Masih D, Minato T, Roisin E, Candy J-P, Tanida H, Uruga T (2005) Anal Chem 77:6969–6975

  40. 40.

    Kau LS, Spira-Solomon J, Penner-Hahn JE, Hodgson KO, Solomon EI (1987) J Am Chem Soc 109:6433–6442

  41. 41.

    Kawamura S, Puscasu MC, Yoshida Y, Izumi Y (2015) Appl Catal A 504:238–247

  42. 42.

    Morikawa M, Ahmed N, Yoshida Y, Izumi Y (2014) Appl Catal B 144:561–569

  43. 43.

    Kawamura S, Ahmed N, Carja G, Izumi Y (2015) Oil Gas Sci Technol 70:841–852

  44. 44.

    Youn SK, Ramgir N, Wang C, Subannajui K, Cimalla V, Zacharias M (2010) J Phys Chem C 114:10092–10100

  45. 45.

    Di L, Wu G, Dai W, Guan N, Li L (2015) Fuel 143:318–326

  46. 46.

    Niu T, Shen LM, Liu Y (2013) Porous Mater 20:789–798

  47. 47.

    Niu T, Zhang LH, Liu Y (2014) Int J Hydrog Energy 39:13800–13807

  48. 48.

    Niu T, Liu GL, Liu Y (2014) Appl Catal B 154(155):82–92

  49. 49.

    Haruta M, Yamada N, Kobayashi T, Iijima S (1989) J Catal 115:301–309

  50. 50.

    Sanchez A, Abbet S, Heiz U, Schneider WD, Hakkinen H, Barnett RN, Landman U (1999) J Phys Chem A 103:9573–9578

  51. 51.

    Bamwenda GR, Tsubota S, Nakamura T, Haruta M (1997) Catal Lett 44:83–87

  52. 52.

    Green IX, Tang W, Neurock M, Yates JT Jr (2011) Science 333:736–739

  53. 53.

    Saavedra J, Doan HA, Pursell CJ, Grabow LC, Chandler BD (2014) Science 345:1599–1602

  54. 54.

    Izumi Y, Obaid D, Konishi K, Masih D, Takagaki M, Terada Y, Tanida H, Uruga T (2008) Inorg Chim Acta 361:1149–1156

  55. 55.

    Herzing AA, Kiely CJ, Carley AF, Landon P, Hutchings GJ (2008) Science 321:1331–1335

  56. 56.

    Singh JA, Overbury SH, Dudney NJ, Li M, Veith GM (2012) ACS Catal 2:1138–1146

  57. 57.

    Ketchie WC, Murayama M, Davis RJ (2007) Top Catal 44:307–317

  58. 58.

    Ojeda M, Zhan B-Z, Iglesia E (2012) J Catal 285:92–102

  59. 59.

    Lippard SJ, Berg JM (1994) Principle of bioinorganic chemistry. University Science Books, Mill Valley, pp 55–56

  60. 60.

    Avgouropoulos G, Ioannides T, Papadopoulou CH, Batista J, Hocevar S, Matralis HK (2002) Catal Today 75:157–167

  61. 61.

    White JL, Baruch MF, Pander JE III, Hu Y, Fortmeyer IC, Park JE, Zhang T, Liao K, Gu J, Yan Y, Shaw TW, Abelev E, Bocarsly AB (2015) Chem Rev 115:12888–12935

  62. 62.

    Ahmed N, Shibata Y, Taniguchi T, Izumi Y (2011) J Catal 279:123–135

  63. 63.

    Dai W, Zheng X, Yang H, Chen X, Wang X, Liu P, Fu X (2009) J Power Sources 188:507–524

  64. 64.

    Clavero C (2014) Nat Photonics 8:95–103

  65. 65.

    Yang K, Li Y, Huang K, Chen X, Fu X, Dai W (2014) Int J Hydrog Energy 39:18312–18325

  66. 66.

    Yang K, Huang K, Lin L, Chen X, Dai W, Fu X (2015) J Power Sources 284:194–205

  67. 67.

    Yang K, Liu J, Si R, Chen X, Dai W, Fu X (2014) J Catal 217:229–239

  68. 68.

    Mariño F, Descorme C, Duprez D (2005) Appl Catal B 58:175–183

  69. 69.

    Lu J-Q, Sun C-X, Li N, Jia A-P, Luo M-F (2013) Appl Surf Sci 287:124–134

  70. 70.

    Polster CS, Nair H, Baertsch CD (2009) J Catal 266:308–319

  71. 71.

    Lee HC, Kim DH (2008) Catal Today 132:109–116

  72. 72.

    Sun S, Mao D, Yu J, Yang Z, Lu G, Ma Z (2015) Catal Sci Technol 5:3166–3181

  73. 73.

    Martínez-Arias A, Gamarra D, Fernández-García M, Hornés A, Bera P, Koppány Z, Schay Z (2009) Catal Today 143:211–217

  74. 74.

    Caputo T, Lisi L, Pirone R, Russo G (2008) Appl Catal A 348:42–53

  75. 75.

    Yao S, Mudiyanselage K, Xu W, Johnston-Peck AC, Hanson JC, Wu T, Stacchiola D, Rodriguez JA, Zhao H, Beyer KA, Chapman KW, Chupas PJ, Martínez-Aries A, Si R, Bolin TB, Liu W, Senanayake SD (2014) ACS Catal 4:1650–1661

  76. 76.

    Wang W-W, Du P-P, Zou S-H, He H-Y, Wang R-X, Jin Z, Shi S, Huang Y-Y, Si R, Song Q-S, Jia C-J, Yan C-H (2015) ACS Catal 5:2088–2099

  77. 77.

    Nolan M, Parker SC, Watson GW (2005) Surf Sci 595:223–232

  78. 78.

    Zhou K, Xu R, Sun X, Chen H, Tian Q, Shen D, Li Y (2005) Catal Lett 101:169–173

  79. 79.

    Gamarra D, Cámara AL, Monte M, Rasmussen SB, Chinchilla LE, Hungría AB, Munuera G, Gyoriffy N, Schay Z, Corberán VC, Conesa JC, Martínez-Arias A (2013) Appl Catal B 130(131):224–238

  80. 80.

    Monte M, Gamarra D, Cámara AL, Rasmussen SB, Gyoriffy N, Schay Z, Martínez-Arias A, Conesa JC (2014) Catal Today 229:104–113

  81. 81.

    Valdés-Solís T, López I, Marbán G (2010) Int J Hydrog Energy 35:1879–1887

  82. 82.

    Hasegawa Y, Maki R, Sano M, Miyake T (2009) Appl Catal A 371:67–72

  83. 83.

    Hernández WY, Centeno MA, Ivanova S, Eloy P, Gaigneaux EM, Odriozola JA (2012) Appl Catal B 123(124):27–35

  84. 84.

    Moretti E, Storaro L, Talon A, Patrono P, Pinzari F, Montanari T, Ramis G, Lenarda M (2008) Appl Catal A 344:165–174

  85. 85.

    Xie X, Li Y, Liu Z-Q, Haruta M, Shen W (2009) Nature 458:746–749

  86. 86.

    Marbán G, López I, Valdés-Solís T, Fuertes AB (2008) Int J Hydrog Energy 33:6687–6695

  87. 87.

    Zhao Z, Lin J, Wang G, Muhammad T (2015) AIChE J 61:239–252

  88. 88.

    Zhao Z, Li Y, Bao T, Wang G, Muhammad T (2014) Catal Commun 46:28–31

  89. 89.

    Zhao Z, Jin R, Bao T, Lin X, Wang G (2011) Appl Catal B 110:154–163

  90. 90.

    Gómez LE, Miró EE, Boix AV (2013) Int J Hydrog Energy 38:5645–5654

  91. 91.

    Xia GG, Yin YG, Willis WS, Wang JY, Suib SL (1999) J Catal 185:91–105

  92. 92.

    Yung MM, Zhao Z, Woods MP, Ozkan US (2008) J Mol Catal A 279:1–9

  93. 93.

    Omata K, Kobayashi Y, Yamada Y (2007) Catal Commun 8:1–5

  94. 94.

    Santos PTA, Costa ACFM, Kiminami RHGA, Andrade HMC, Lira HL, Gama L (2009) J Alloys Compd 483:399–401

  95. 95.

    Bhattacharjee S, Lee Y-R, Puthiaraj P, Cho S-M, Ahn W-S (2015) Catal Surv Asia 19:203–222

  96. 96.

    Farrusseng D, Aguado S, Pinel C (2009) Angew Chem 48:7502–7513

  97. 97.

    Liu J, Chen L, Cui H, Zhang J, Zhang L, Su C-Y (2014) Chem Soc Rev 43:6011–6061

  98. 98.

    Corma A, García H, Llabrés i Xamena FX (2010) Chem Rev 110:4606–4655

  99. 99.

    Dhakshinamoorthy A, Garcia H (2012) Chem Soc Rev 41:5262–5284

  100. 100.

    Yoon M, Srirambalaji R, Kim K (2012) Chem Rev 112:1196–1231

  101. 101.

    Ma L, Abney C, Lin W (2009) Chem Soc Rev 38:1248–1256

  102. 102.

    Yoshida Y, Izumi Y (2015) J Catal 332:1–12

  103. 103.

    Dan-Hardi M, Serre C, Frot T, Rozes L, Maurin G, Sanchez C, Férey G (2009) J Am Chem Soc 131:10857–10859

Download references

Acknowledgments

The authors are grateful for the financial support from the Grant-in-Aid for Scientific Research C (26410204, 22550117) and Research Fellowship for Young Scientists (25·489; Y.Y.) from the Japan Society for the Promotion of Science and for approval of the Photon Factory Proposal Review Committee for X-ray measurements (2014G631, 2013G159, 2011G083, 2009G552, 2009G596) and the Priority Program for Disaster-Affected Quantum Beam Facilities (2011A1978, SPring-8 & KEK). The authors would like to thank Enago (www.enago.jp) for the English language review.

Author information

Correspondence to Yasuo Izumi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yoshida, Y., Izumi, Y. Recent Advances in the Preferential Thermal-/Photo-Oxidation of Carbon Monoxide: Noble Versus Inexpensive Metals and Their Reaction Mechanisms. Catal Surv Asia 20, 141–166 (2016). https://doi.org/10.1007/s10563-016-9216-8

Download citation

Keywords

  • Preferential CO oxidation of CO
  • Photo PROX
  • Copper catalyst
  • Cobalt catalyst
  • Binary metal–organic framework