Catalysis Surveys from Asia

, Volume 18, Issue 4, pp 177–182 | Cite as

High Activity and Selective Fischer–Tropsch Catalysts for Use in a Microchannel Reactor

  • Heinz J. Robota
  • Laura A. Richard
  • Soumitra Deshmukh
  • Steve LeViness
  • Daniele Leonarduzzi
  • Diarmid Roberts
Article

Abstract

Each process configuration for practicing the Fischer–Tropsch synthesis places demands particular to that configuration on the catalyst to be used. We discuss how a particular catalyst, prepared by the OMX (organic matrix combustion) method, when used in conjunction with the Velocys microchannel reactor system, results in a very stable, high performance Fischer–Tropsch synthesis system. With the ability to remove heat far more effectively than a conventional reactor system, this microchannel reactor requires a catalyst with much higher volumetric reactive site density. Further, with such a high volumetric reaction rate, mass transfer effects will be important in both the observed activity and selectivity of the operating catalyst. Nevertheless, the catalyst prepared using the OMX method exhibits an apparent turnover frequency which is considerably higher than reported for other catalysts in the literature. In addition to high activity, an economically useful catalyst must exhibit a stable, high selectivity for liquid products and be able to recover near-fresh performance using a regeneration approach which can be carried out with the catalyst in-place. An example of such a stable, multiply regenerated catalyst is given. Finally, further development has focused on a catalyst with even higher C5+ selectivity.

Keywords

Fischer–Tropsch synthesis Microchannel reactor Cobalt catalyst 

References

  1. 1.
    Fischer, F. and Tropsch, H. United States Patent US 1,746,464 (1930)Google Scholar
  2. 2.
    Davis BH (2005) Top Catal 32:143–168CrossRefGoogle Scholar
  3. 3.
    Bartholomew CH (1990) Catal Lett 7:303–315CrossRefGoogle Scholar
  4. 4.
    Dry ME (1996) Practical and theoretical aspects of the catalytic Fischer-Tropsch process. Appl Catal A 138:319–344CrossRefGoogle Scholar
  5. 5.
    Dry ME (2001) J Chem Technol Biotechnol 77:43–50CrossRefGoogle Scholar
  6. 6.
    Leckel D (2009) Energy Fuels 23:2342–2358CrossRefGoogle Scholar
  7. 7.
    Deshmukh SR, Tonkovich ALY, Jarosch KT, Schrader L, Fitzgerald SP, Kilanowski DR, Lerou JJ, Mazanec TJ (2010) Ind Eng Chem Res 49:10883–10888CrossRefGoogle Scholar
  8. 8.
    Bezemer GL, Bitter JH, Kuipers HPCE, Oosterbeek H, Holewijn JE, Xu X, Kapteijn F, van Dillen AJ, de Jong KP (2006) J Am Chem Soc 128:3956–3964CrossRefGoogle Scholar
  9. 9.
    Park J-Y, Lee Y-J, Karandikar PK, Jun K-W, Ha K-S, Park H-G (2012) Appl Catal A 411–412:15–23CrossRefGoogle Scholar
  10. 10.
    den Breejen JP, Radstake PB, Bezemer GL, Bitter JH, Frøseth V, Holmen A, de Jong KP (2009) J Am Chem Soc 131:7197–7203CrossRefGoogle Scholar
  11. 11.
    Xiao, T., Qian, Y., WO2008104793(A2) (2008), to Oxford Catalysts Ltd.Google Scholar
  12. 12.
    Li F, Hu K, Li J, Zhang D, Chen G (2002) J Nucl Mater 300:82–88CrossRefGoogle Scholar
  13. 13.
    Toniolo J, Takimi A, Bergmann C (2010) Mater Res Bull 45:672–676CrossRefGoogle Scholar
  14. 14.
    Daly F., Richard, L. A., and Rugmini, S., PCT/GB2012/000125 (2012), to Oxford Catalysts Ltd.Google Scholar
  15. 15.
    Richard LA, Moreau P, Rugmini S, Daly F (2013) Appl Catal A 464–465:200–206CrossRefGoogle Scholar
  16. 16.
    Lögdberg S, Lualdi M, Järas S, Walmsley JC, Blekkan EA, Rytter E, Holmen (2010) J Catal 274:84–98CrossRefGoogle Scholar
  17. 17.
    Schanke D, Hilmen AM, Bergene E, Kinnari K, Rytter E, Ådnanes E, Holmen A (1995) Catal Lett 34:269–284CrossRefGoogle Scholar
  18. 18.
    Vervloet D, Kapteijn F, Nijenhuis J, van Ommen JR (2012) Catal Sci Technol 2:1221–1233CrossRefGoogle Scholar
  19. 19.
    Kruit KD, Vervloet D, Kapteijn F, van Ommen JR (2013) Catal Sci Technol 3:2210–2213CrossRefGoogle Scholar
  20. 20.
    Becker H, Gűttel R, Turek T (2014) Chem Eng Tech 86:544–549Google Scholar
  21. 21.
    Bouh AO, Rice GL, Scott SL (1999) J Am Chem Soc 121:7201–7210CrossRefGoogle Scholar
  22. 22.
    Bu S, Gao ZW, Li JL, Tikkanen W (2011) Adv Mater Res 194–196:1807–1810CrossRefGoogle Scholar
  23. 23.
    Daly, F., Richard, L., and Rugmini, S., US 2014/0088206 A1 (2014)Google Scholar
  24. 24.
    LeViness S, Deshmukh SR, Richard LA, Robota HJ (2014) Top Catal 57:518–525CrossRefGoogle Scholar
  25. 25.
    Saib AM, Moodley DJ, Ciobîca IM, Hauman MM, Sigwebela BH, Weststrate CJ, Niemansverdriet JW, van de Loosdrecht J (2010) Catal Today 154:271–282CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Heinz J. Robota
    • 1
  • Laura A. Richard
    • 2
  • Soumitra Deshmukh
    • 1
  • Steve LeViness
    • 1
  • Daniele Leonarduzzi
    • 2
  • Diarmid Roberts
    • 2
  1. 1.VelocysPlain CityUSA
  2. 2.VelocysOxfordshireUK

Personalised recommendations