Skip to main content
Log in

Partial Oxidation of Methane to Nitrogen Free Synthesis Gas Using Air as Oxidant

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

In order to generate synthesis gas or hydrogen free from nitrogen by partial oxidation of methane using air as an oxidant, gas–solid reactions of methane and a metal oxide and/or mixed metal oxides were carried out. The background of the gas–solid reaction was briefly reviewed and then a series of the present author’s studies was described. As metal oxides Fe2O3 and NiO were active, but the reaction with methane and these oxides afforded complete oxidation to give H2O and CO2. To both oxides, addition of Cr- and Mg- oxides promoted the following reaction to give synthesis gas.

$$ {\text{CH}}_{ 4} + {\text{ MM}}'{\text{O}}_{\text{x}} \to {\text{CO }} + {\text{ 2H}}_{ 2} + {\text{ MM}}^{\prime}{\text{O}}_{{{\text{x}} - 1}} $$

After the reaction with methane, mixed oxides were reduced to lower valence state oxides and they were regenerated by the oxidation with air.

$$ {\text{MM}}^{\prime}{\text{O}}_{{{\text{x}} - 1}} + {\text{ Air}} \to {\text{MM}}'{\text{O}}_{\text{x}} + {\text{ N}}_{ 2} $$

Up to 10 repeated reaction and regeneration cycles did not or only slightly decreased the activity of the mixed oxides. By switching two or more reactors, the reaction and the regeneration were carried out to give synthesis gas continuously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Rostrup-Nielsen JR (1984) In: Anderson JR, Boudart M (eds) Catalysis science and technology, vol 5. Springer, Berlin, pp 1–118

  2. Ashcroft AT, Cheetham AK, Foord JS, Green MLH, Grey CP, Murrell AJ, Vernon PDF (1990) Nature 344:319–321

    Article  CAS  Google Scholar 

  3. Prettre ME, Eichner, Ch, Perrin M (1946) Trans Faraday Soc 42:335–340

  4. Kunimori K, Umeda S, Nakamura J, Uchijima T (1992) Bull Chem Soc Jpn 65:2562–2564

    Article  CAS  Google Scholar 

  5. Hickman DA, Schmidt LD (1992) J Catal 138:267–282

    Article  CAS  Google Scholar 

  6. Hickman DA, Haupfear EA, Schmidt LD (1993) Catal Lett 17:223–237

    Article  CAS  Google Scholar 

  7. Nakagawa K, Ikenaga N, Suzuki T, Kobayashi T, Haruta M (1998) Appl Catal A Gen 169:281–290

    Article  CAS  Google Scholar 

  8. Nakagawa K, Ikenaga N, Teng YH, Kobayashi T, Suzuki T (1999) J Catal 186:405–413

    Article  CAS  Google Scholar 

  9. Nakagawa K, Ikenaga NO, Kobayashi T, Suzuki T (2001) Catal Today 64:31–41

    Article  CAS  Google Scholar 

  10. York APE, Xiao TC, Green MLH, Claridge JB (2007) Catal Rev Sci En 49:511–560

    Article  CAS  Google Scholar 

  11. Rostrup-Nielsen JR (2000) Catal Today 63:159–164

    Article  CAS  Google Scholar 

  12. Ritter JA, Ebner AD (2007) Separ Sci Technol 42:1123–1193

    Article  CAS  Google Scholar 

  13. Zhan MC, Wang WD, Tian TF, Chen CS (2010) Energy Fuels 24:764–771

    Article  CAS  Google Scholar 

  14. Otsuka K, Ushiyama T, Yamanaka I (1993) Chem Lett 22:1517–1520

    Article  Google Scholar 

  15. Otsuka K, Wang Y, Sunada E, Yamanaka I (1998) J Catal 175:152–160

    Article  CAS  Google Scholar 

  16. Otsuka K, Wang Y, Nakamura M (1999) Appl Catal A Gen 183:317–324

    Article  CAS  Google Scholar 

  17. Otsuka K, Kaburagi T, Yamada C, Takenaka S (2003) J Power Sources 122:111–121

    Article  CAS  Google Scholar 

  18. Takenaka S, Son VTD, Yamada C, Otsuka K (2003) Chem Lett 32:1022–1023

    Article  CAS  Google Scholar 

  19. Takenaka S, Hanaizumi N, Son VTD, Otsuka K (2004) J Catal 228:405–416

    Article  CAS  Google Scholar 

  20. Kang ZC, Eyring L (2000) J Solid State Chem 155:129–137

    Article  CAS  Google Scholar 

  21. Kang ZC, Eyring L (2001) J Alloys Compd 323:97–101

    Article  Google Scholar 

  22. Ishida M, Jin HG (1994) Energy 19:415–422

    Article  CAS  Google Scholar 

  23. Gavalas GR, Phichitkul C, Voecks GE (1984) J Catal 88:54–64

    Article  CAS  Google Scholar 

  24. Gavalas GR, Phichitkul C, Voecks GE (1984) J Catal 88:65–72

    Article  CAS  Google Scholar 

  25. Dewaele O, Froment GF (1999) J Catal 184:499–513

    Article  CAS  Google Scholar 

  26. Adanez J, de Diego LF, Garcia-Labiano F, Gayan P, Abad A, Palacios JM (2004) Energy Fuels 18:371–377

    Article  CAS  Google Scholar 

  27. Ryden M, Lyngfelt A, Mattisson T (2008) Energy Fuels 22:2585–2597

    Article  CAS  Google Scholar 

  28. Nakayama O, Ikenaga NO, Miyake T, Yagasaki E, Suzuki T (2008) Catal Today 138:141–146

    Article  CAS  Google Scholar 

  29. Nakayama O, Ikenaga N, Miyake T, Yagasaki E, Suzuki T (2010) Ind Eng Chem Res 49:526–534

    Article  CAS  Google Scholar 

  30. Slagtern A, Swaan HM, Olsbye U, Dahl IM, Mirodatos C (1998) Catal Today 46:107–115

    Article  CAS  Google Scholar 

  31. Shah SI, Unruh KM (1991) Appl Phys Lett 59:3485–3487

    Article  CAS  Google Scholar 

  32. Otsuka K, Yamada C, Kaburagi T, Takenaka S (2003) Int J Hydrogen Energy 228:335–342

    Article  Google Scholar 

  33. Otsuka K, Takenaka S (2004) J Jpn Petrol Inst 47:377–386

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by Grant-in-Aid for Scientific Research (20560722) from JSPS and MEXT.HAITEKU(2007–2011). Discussion with professors N. Ikenaga and T. Miyake of Kansai University was greatly appreciated. Dr. E. Yagasaki of Kansai Electric Power Co. was also greatly acknowledged for her financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshimitsu Suzuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, T., Nakayama, O. & Okamoto, N. Partial Oxidation of Methane to Nitrogen Free Synthesis Gas Using Air as Oxidant. Catal Surv Asia 16, 75–90 (2012). https://doi.org/10.1007/s10563-012-9137-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-012-9137-0

Keywords

Navigation