Skip to main content
Log in

Photo-Induced Electron Transfer Between a Reactant Molecule and Semiconductor Photocatalyst: In Situ Doping

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

The possibility of the direct electron transition between the donor/acceptor level generated by adsorbed molecules and the conduction/valence band for photo-illuminated semiconductor-type metal oxide is discussed. The effective wavelength is shifted to a longer wavelength by the formation of donor/acceptor level derived from adsorbed molecule (called here “in situ doping”). This photo-activation mechanism by “in situ doping” gives us attractive ways for the removing the limit of band-gap energy, and the utilization of visible light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Scheme 3
Fig. 8
Fig. 9
Scheme 4
Fig. 10
Fig. 11
Scheme 5
Scheme 6
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Scheme 7
Scheme 8

Similar content being viewed by others

References

  1. Fox MA, Chen CC (1981) J Am Chem Soc 103:6757–6759

    Article  CAS  Google Scholar 

  2. Sancier KM, Morrison SR (1979) Surf Sci 83:29–44

    Article  CAS  Google Scholar 

  3. Bickley RI, Munuera G, Stone FS (1973) J Catal 31:398–407

    Article  CAS  Google Scholar 

  4. Zakharenko VS, Cherkashin AE, Keier NP, Gerasimova GF (1975) Kinet Catal 16:142–148

    Google Scholar 

  5. Zakharenko VS, Cherkashin AE, Keier NP, Koshcheev SV (1975) Kinet Catal 16:149–154

    Google Scholar 

  6. Murphy WR, Veerkamp TF, Leland TW (1976) J Catal 43:304–321

    Article  CAS  Google Scholar 

  7. Formenti M, Juillet F, Meriaude P, Teichner SJ (1972) Bull Soc Chim Fr 69

  8. Maeda K, Domen K (2007) J Phys Chem C 111:7851–7861

    Article  CAS  Google Scholar 

  9. Maeda K, Domen K (2010) Chem Mater 22:612–623

    Article  CAS  Google Scholar 

  10. Abe R, Higashi M, Domen K (2011) ChemSusChem 4:228–237

    Article  CAS  Google Scholar 

  11. Kudo A, Miseki Y (2009) Chem Soc Rev 38:253–278

    Article  CAS  Google Scholar 

  12. Sato S (1986) Chem Phys Lett 123:126–128

    Article  CAS  Google Scholar 

  13. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Science 293:269–271

    Article  CAS  Google Scholar 

  14. Luo HM, Takata T, Lee YG, Zhao JF, Domen K, Yan YS (2004) Chem Mater 16:846–849

    Article  CAS  Google Scholar 

  15. Miyauchi M, Nakajima AK, Watanabe T, Hashimoto K (2002) Chem Mater 14:4714–4720

    Article  CAS  Google Scholar 

  16. Yu H, Irie H, Shimodaira Y, Hosogi Y, Kuroda Y, Miyauchi M, Hashimoto K (2010) J Phys Chem C 114:16481–16487

    Article  CAS  Google Scholar 

  17. Cho S (1994) Chem Eng Prog 90:39–45

    CAS  Google Scholar 

  18. Forzatti P, Lietti L (1996) Heterogen Chem Rev 3:33–51

    Article  CAS  Google Scholar 

  19. Nakajima F (1990) Syokubai 32:236

    CAS  Google Scholar 

  20. Wood S (1994) Chem Eng Prog 90:32–38

    CAS  Google Scholar 

  21. Parvulescu V, Grange P, Delmon B (1998) Catal Today 46:233–316

    Article  CAS  Google Scholar 

  22. Tanaka T, Teramura K, Funabiki T (2000) Phys Chem Chem Phys 2:2681–2682

    Article  CAS  Google Scholar 

  23. Tanaka T, Teramura K, Arakaki K, Funabiki T (2002) Chem Commun 2742–2743

  24. Teramura K, Tanaka T, Funabiki T (2003) Langmuir 19:1209–1214

    Article  CAS  Google Scholar 

  25. Teramura K, Tanaka T, Funabiki T (2003) Chem Lett 32:1184–1185

    Article  CAS  Google Scholar 

  26. Teramura K, Tanaka T, Kani M, Hosokawa T, Funabiki T (2004) J Mol Catal A Chem 208:299–305

    Article  CAS  Google Scholar 

  27. Teramura K, Tanaka T, Yamazoe S, Arakaki K, Funabiki T (2004) Appl Catal B Environ 53:29–36

    Article  CAS  Google Scholar 

  28. Yamazoe S, Okumura T, Teramura K, Tanaka T (2006) Catal Today 111:266–270

    Article  CAS  Google Scholar 

  29. Yamazoe S, Okumura T, Hitomi Y, Shishido T, Tanaka T (2007) J Phys Chem C 111:11077–11085

    Article  CAS  Google Scholar 

  30. Yamazoe S, Okumura T, Tanaka T (2007) Catal Today 120:220–225

    Article  CAS  Google Scholar 

  31. Yamazoe S, Teramura K, Hitomi Y, Shishido T, Tanaka T (2007) J Phys Chem C 111:14189–14197

    Article  CAS  Google Scholar 

  32. Yamazoe S, Hitomi Y, Shishido T, Tanaka T (2008) Appl Catal B Environ 82:67–76

    Article  CAS  Google Scholar 

  33. Yamazoe S, Hitomi Y, Shishido T, Tanaka T (2008) J Phys Chem C 112:6869–6879

    Article  CAS  Google Scholar 

  34. Yamazoe S, Masutani Y, Teramura K, Hitomi Y, Shishido T, Tanaka T (2008) Appl Catal B Environ 83:123–130

    Article  CAS  Google Scholar 

  35. Tanaka T, Teramura K, Yamamoto T, Takenaka S, Yoshida S, Funabiki T (2002) J Photochem Photobiol A 148:277–281

    Article  CAS  Google Scholar 

  36. Asahi R, Morikawa T, Taga Y (2001) Abstr Pap Am Chem Soc 222:U633–U633

    Google Scholar 

  37. Ramis G, Yi L, Busca G, Turco M, Kotur E, Willey RJ (1995) J Catal 157:523–535

    Article  CAS  Google Scholar 

  38. Kung MC, Kung HH (1985) Catal Rev Sci Eng 27:425–460

    Article  Google Scholar 

  39. Chuang CC, Shiu JS, Lin JL (2000) Phys Chem Chem Phys 2:2629–2633

    Article  CAS  Google Scholar 

  40. Ito E, Mergler YJ, Nieuwenhuys BE, Calis HPA, vanBekkum H, vandenBleek CM (1996) J Chem Soc Faraday Trans 92:1799–1806

    Article  CAS  Google Scholar 

  41. Meriaudeau P, Che M, Jorgensen CK (1970) Chem Phys Lett 5:131–133

    Article  CAS  Google Scholar 

  42. Hauser C (1971) Z Angew Math Phys 22:783

    Article  Google Scholar 

  43. Howe RF, Gratzel M (1985) J Phys Chem 89:4495–4499

    Article  CAS  Google Scholar 

  44. Hurum DC, Agrios AG, Gray KA, Rajh T, Thurnauer MC (2003) J Phys Chem B 107:4545–4549

    Article  CAS  Google Scholar 

  45. Foner SN, Cochran EL, Bowers VA, Jen CK (1958) Phys Rev Lett 1:91–94

    Article  CAS  Google Scholar 

  46. Vansant EF, Lunsford JH (1972) J Phys Chem 76:2716

    Article  CAS  Google Scholar 

  47. Nagai S (1973) Bull Chem Soc Jpn 46:1144–1148

    Article  CAS  Google Scholar 

  48. Shimamoto N, Hatano K, Katsu T, Fujita Y (1975) Bull Chem Soc Jpn 48:18–21

    Article  CAS  Google Scholar 

  49. Ikeda S, Sugiyama N, Pal B, Marci G, Palmisano L, Noguchi H, Uosaki K, Ohtani B (2001) Phys Chem Chem Phys 3:267–273

    Article  CAS  Google Scholar 

  50. Ikeda S, Sugiyama N, Murakami S, Kominami H, Kera Y, Noguchi H, Uosaki K, Torimoto T, Ohtani B (2003) Phys Chem Chem Phys 5:778–783

    Article  CAS  Google Scholar 

  51. Rheldon RA, Kochi JK (1981) Metal-catalyzed oxidations of organic compounds. Academic Press, New York

    Google Scholar 

  52. Hudlicky M (1990) Oxidations in organic chemistry. American Chemical Society, Washington DC

    Google Scholar 

  53. Hill CL (1998) Advances in oxygenated process. JAI, London

    Google Scholar 

  54. Murahashi SI (1995) Angew Chem Int Ed 34:2443–2465

    Article  CAS  Google Scholar 

  55. Larock RC (1989) Comprehensive organic transformations. VCH, New York

    Google Scholar 

  56. Nicolaou KC, Mathison CJN, Montagnon T (2003) Angew Chem Int Ed 42:4077–4082

    Article  CAS  Google Scholar 

  57. Nicolaou KC, Mathison CJN, Montagnon T (2004) J Am Chem Soc 126:5192–5201

    Article  CAS  Google Scholar 

  58. Mukaiyama T, Kawana A, Fukuda Y, Matsuo J (2001) Chem Lett 390–391

  59. Sheldon RA, Arends I, Dijksman A (2000) Catal Today 57:157–166

    Article  CAS  Google Scholar 

  60. Mallat T, Baiker A (2004) Chem Rev 104:3037–3058

    Article  CAS  Google Scholar 

  61. Yamaguchi K, Mizuno N (2002) Angew Chem Int Ed 41:4538

    Article  CAS  Google Scholar 

  62. Yamaguchi K, Mori K, Mizugaki T, Ebitani K, Kaneda K (2000) J Am Chem Soc 122:7144–7145

    Article  CAS  Google Scholar 

  63. Yamaguchi K, Mizuno N (2003) Angew Chem Int Ed 42:1480–1483

    Article  CAS  Google Scholar 

  64. Mori K, Yamaguchi K, Mizugaki T, Ebitani K, Kaneda K (2001) Chem Commun 461–462

  65. Pillai UR, Sahle-Demessie E (2002) J Catal 211:434–444

    CAS  Google Scholar 

  66. Chen J, Ollis DF, Rulkens WH, Bruning H (1999) Water Res 33:661–668

    Article  CAS  Google Scholar 

  67. Falconer JL, Magrini-Bair KA (1998) J Catal 179:171–178

    Article  CAS  Google Scholar 

  68. Muggli DS, Lowery KH, Falconer JL (1998) J Catal 180:111–122

    Article  CAS  Google Scholar 

  69. Wang Q, Zhang M, Chen CC, Ma W, Zhao J (2010) Angew Chem Int Ed 49:7976–7979

    Google Scholar 

  70. Zhang M, Wang Q, Chen CC, Ma W, Zhao J (2010) Angew Chem Int Ed 48:6081–6084

    Google Scholar 

  71. Lang X, Ji H, Chen C, Ma W, Zhao J (2011) Angew Chem Int Ed 50:3934–3937

    Article  CAS  Google Scholar 

  72. Su F, Mathew SC, Lipner G, Fu X, Antonietti M, Blechert S, Wang X (2010) J Am Chem Soc 132:16299–16301

    Article  CAS  Google Scholar 

  73. Su F, Mathew SC, Moehlmann L, Antonietti M, Wang X, Blechert S (2011) Angew Chem Int Ed 50:657–660

    Article  CAS  Google Scholar 

  74. Tsukamoto D, Ikeda M, Shiraishi Y, Hara T, Ichikuni N, Tanaka S, Hirai T (2011) Chem Eur J 17:9816–9824

    Article  CAS  Google Scholar 

  75. Ohuchi T, Miyatake T, Hitomi Y, Tanaka T (2007) Catal Today 120:233–239

    Article  CAS  Google Scholar 

  76. Shishido T, Miyatake T, Teramura K, Hitomi Y, Yamashita H, Tanaka T (2009) J Phys Chem C 113:18713–18718

    Article  CAS  Google Scholar 

  77. Furukawa S, Ohno Y, Shishido T, Teramura K, Tanaka T (in press) ChemPhysChem

  78. Furukawa S, Tamura A, Shishido T, Teramura K, Tanaka T (in press) Appl Catal B-Environ

  79. Furukawa S, Ohno Y, Shishido T, Teramura K, Tanaka T (in press) ACS Catal

  80. Murahashi S-I, Okano Y, Sato H, Nakae T, Komiya N (2007) Synlett 1675–1678

  81. So M-H, Liu Y, Ho C-M, Che C-M (2009) Chem Asian J 4:1551–1561

    Article  CAS  Google Scholar 

  82. Maeda Y, Nishimura T, Uemura S (2003) Bull Chem Soc Jpn 76:2399–2403

    Article  CAS  Google Scholar 

  83. Little LH, Kiselev AV, Lygin VI (1966) Infrared spectra of adsorbed species. Academic Press Inc, London

    Google Scholar 

  84. Socrates G (1994) Infrared characteristic group frequencies: table and charts. Wiley, New York

    Google Scholar 

  85. Fridman VZ, Davydov AA, Titievsky K (2004) J Catal 222:545–557

    Article  CAS  Google Scholar 

  86. Sugantha M, Varadaraju UV, Rao GVS (1994) J Solid State Chem 111:33–40

    Article  CAS  Google Scholar 

  87. Verissimo C, Garrido FMS, Alves OL, Calle P, MartinezJuarez A, Iglesias JE, Rojo JM (1997) Solid State Ionics 100:127–134

    Article  CAS  Google Scholar 

  88. Legget J (1990) Global warming. Oxford University Press, New York

    Google Scholar 

  89. Broecker WS (1987) Nature 328:123–126

    Article  CAS  Google Scholar 

  90. Fujiwara H, Hosokawa H, Murakoshi K, Wada Y, Yanagida S, Okada T, Kobayashi H (1997) J Phys Chem B 101:8270–8278

    Article  CAS  Google Scholar 

  91. Thampi KR, Kiwi J, Gratzel M (1987) Nature 327:506–508

    Article  CAS  Google Scholar 

  92. Inoue T, Fujishima A, Konishi S, Honda K (1979) Nature 277:637–638

    Article  CAS  Google Scholar 

  93. Aurianblajeni B, Halmann M, Manassen J (1980) Sol Energy 25:165–170

    Article  CAS  Google Scholar 

  94. Sayama K, Arakawa H (1996) J Photochem Photobiol A 94:67–76

    Article  CAS  Google Scholar 

  95. Sayama K, Arakawa H (1993) J Phys Chem 97:531–533

    Article  CAS  Google Scholar 

  96. Iizuka K, Kojima Y, Kudo A (2009) Shokubai 51:228–233

    CAS  Google Scholar 

  97. Ishitani O, George MW, Ibusuki T, Johnson FPA, Koike K, Nozaki K, Pac CJ, Turner JJ, Westwell JR (1994) Inorg Chem 33:4712–4717

    Article  CAS  Google Scholar 

  98. Hori H, Ishihara J, Koike K, Takeuchi K, Ibusuki T, Ishitani O (1999) J Photochem Photobiol A 120:119–124

    Article  CAS  Google Scholar 

  99. Kohno Y, Hayashi H, Takenaka S, Tanaka T, Funabiki T, Yoshida S (1999) J Photochem Photobiol A 126:117–123

    Article  CAS  Google Scholar 

  100. Kohno Y, Yamamoto T, Tanaka T, Funabiki T (2001) J Mol Catal A Chem 175:173–178

    Article  CAS  Google Scholar 

  101. Kohno Y, Tanaka T, Funabiki T, Yoshida S (1997) Chem Commun 841–842

  102. Kohno Y, Tanaka T, Funabiki T, Yoshida S (1997) Chem Lett 993–994

  103. Kohno Y, Tanaka T, Funabiki T, Yoshida S, Chem J (1998) Soc Faraday Trans 94:1875–1880

    Article  CAS  Google Scholar 

  104. Kohno Y, Tanaka T, Funabiki T, Yoshida S (2000) Phys Chem Chem Phys 2:2635–2639

    Article  CAS  Google Scholar 

  105. Kohno Y, Tanaka T, Funabiki T, Yoshida S (2000) Phys Chem Chem Phys 2:5302–5307

    Article  CAS  Google Scholar 

  106. Kohno Y, Ishikawa H, Tanaka T, Funabiki T, Yoshida S (2001) Phys Chem Chem Phys 3:1108–1113

    Article  CAS  Google Scholar 

  107. Teramura K, Tanaka T, Ishikawa H, Kohno Y, Funabiki T (2004) J Phys Chem B 108:346–354

    Article  CAS  Google Scholar 

  108. Teramura K, Tsuneoka H, Shishido T, Tanaka T (2008) Chem Phys Lett 467:191–194

    Article  CAS  Google Scholar 

  109. Fukuda Y, Tanabe K (1973) Bull Chem Soc Jpn 46:1616–1619

    Article  CAS  Google Scholar 

  110. Tsuji H, Shishido T, Okamura A, Gao YZ, Hattori H, Kita H, Chem J (1994) Soc Faraday Trans 90:803–807

    Article  CAS  Google Scholar 

  111. Yanagisawa Y, Takaoka K, Yamabe S, Ito T (1995) J Phys Chem 99:3704–3710

    Article  CAS  Google Scholar 

  112. Busca G, Lamotte J, Lavalley JC, Lorenzelli V (1987) J Am Chem Soc 109:5197–5202

    Article  CAS  Google Scholar 

  113. Feng OY, Kondo JN, Maruya K, Domen K, Chem J (1997) Soc Faraday Trans 93:169–174

    Article  Google Scholar 

  114. Wang GW, Hattori H, Chem J (1984) Soc Faraday Trans I 80:1039–1047

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was partially supported by and Grants-in-Aid for Scientific Research on Priority Area (No. 10734036, “Molecular Nano Dynamics” and No. 20037038, (Chemistry of Concerto Catalysis), and Scientific Research (B) (No. 19360365). K. T. was supported by the Program for Improvement of Research Environment for Young Researchers from Special Coordination Funds for Promoting Science and Technology (SCF) commissioned by the MEXT of Japan. The authors thank Dr. Yoshiumi Kohno, Dr. Seiji Yamazoe, Mr. Tai Ohuchi, Mr. Toshiaki Miyatake, Mr. Shinya Furukawa, Miss. Ayaka Tamura, and Mr. Yasuhiro Ohno at Kyoto University for the collaboration to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsunehiro Tanaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shishido, T., Teramura, K. & Tanaka, T. Photo-Induced Electron Transfer Between a Reactant Molecule and Semiconductor Photocatalyst: In Situ Doping. Catal Surv Asia 15, 240–258 (2011). https://doi.org/10.1007/s10563-011-9126-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-011-9126-8

Keywords

Navigation