Skip to main content
Log in

Size-Controlled Synthesis of Gold Clusters as Efficient Catalysts for Aerobic Oxidation

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

This article summarizes our recent research on the size-controlled synthesis of Au clusters stabilized by a polymer or supported by a solid, and related work reported by others. Small Au clusters have excellent, size-specific catalytic activity in the aerobic oxidation of alcohols and alkanes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Scheme 3
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Heiz U, Landman U (2006) Nanocatalysis. Springer, Berlin

    Google Scholar 

  2. Castleman AW Jr, Bowen KH Jr (1996) J Phys Chem 100:12911

    Article  CAS  Google Scholar 

  3. Haruta M, Kobayashi T, Sano H, Yamada N (1987) Chem Lett 2:405

    Article  Google Scholar 

  4. Haruta M (2005) Nature 437:1098

    Article  CAS  Google Scholar 

  5. Hashmi ASK, Hutchings GJ (2006) Angew Chem Int Ed 45:7896

    Article  Google Scholar 

  6. Corma A, Garcia H (2008) Chem Soc Rev 37:2096

    Article  CAS  Google Scholar 

  7. Della Pina C, Falletta E, Prati L, Rossi M (2008) Chem Soc Rev 37:2077

    Article  CAS  Google Scholar 

  8. Comotti M, Della Pina C, Matarrese R, Rossi M (2004) Angew Chem Int Ed 43:5812

    Article  CAS  Google Scholar 

  9. Turner M, Golovko VB, Vaughan OPH, Abdulkin P, Berenguer-Murcia A, Tikhov MS, Johnson BFG, Lambert RM (2008) Nature 454:981

    Article  CAS  Google Scholar 

  10. Taylor KJ, Pettiette-Hall CL, Cheshnovsky O, Smalley RE (1982) J Chem Phys 96:3319

    Article  Google Scholar 

  11. Lee TH, Ervin KM (1994) J Phys Chem 98:10023

    Article  CAS  Google Scholar 

  12. Wallace WT, Whetten RL (2002) J Am Chem Soc 124:7499

    Article  CAS  Google Scholar 

  13. Socaciu LD, Hagen J, Bernhardt TM, Wöste L, Heiz U, Häkkinen H, Landman U (2003) J Am Chem Soc 125:10437

    Article  CAS  Google Scholar 

  14. Kim YD, Fischer M, Ganteför G (2003) Chem Phys Lett 377:170

    Article  CAS  Google Scholar 

  15. Bernhardt TM (2005) Int J Mass Spectrom 243:1

    Article  CAS  Google Scholar 

  16. Zhai HJ, Wang LS (2005) J Chem Phys 122:051101

    Article  Google Scholar 

  17. Li J, Li X, Zhai HJ, Wang LS (2003) Science 299:864

    Article  CAS  Google Scholar 

  18. Huang W, Zhai H-J, Wang L-S (2010) J Am Chem Soc 132:4344

    Article  CAS  Google Scholar 

  19. Abad A, Concepción P, Corma A, García H (2005) Angew Chem Int Ed 44:4066

    Article  CAS  Google Scholar 

  20. Su F-Z, Liu Y-M, Wang L-C, Cao Y, He H-Y, Fan K-N (2007) Angew Chem Int Ed 47:334

    Article  Google Scholar 

  21. Miyamura H, Matsubara R, Miyazaki Y, Kobayashi S (2007) Angew Chem Int Ed 46:4151

    Article  CAS  Google Scholar 

  22. Ishida T, Haruta M (2007) Angew Chem Int Ed 46:7154

    Article  CAS  Google Scholar 

  23. Tsunoyama H, Sakurai H, Negishi Y, Tsukuda T (2005) J Am Chem Soc 127:9374

    Article  CAS  Google Scholar 

  24. Tsunoyama H, Sakurai H, Tsukuda T (2006) Chem Phys Lett 429:528

    Article  CAS  Google Scholar 

  25. Tsunoyama H, Tsukuda T, Sakurai H (2007) Chem Lett 36:212

    Article  CAS  Google Scholar 

  26. Tsunoyama H, Ichikuni N, Tsukuda T (2008) Langmuir 24:11327

    Article  CAS  Google Scholar 

  27. Tsunoyama H, Ichikuni N, Sakurai H, Tsukuda T (2009) J Am Chem Soc 131:7086

    Article  CAS  Google Scholar 

  28. Tsukuda T, Tsunoyama H, Sakurai H (2011) Chem Asian J 6:736

    Article  CAS  Google Scholar 

  29. Liu Y, Tsunoyama H, Akita T, Tsukuda T (2010) Chem Commun 46:550

    Article  CAS  Google Scholar 

  30. Liu Y, Tsunoyama H, Akita T, Xie S, Tsukuda T (2011) ACS Catal 1:2

    Article  CAS  Google Scholar 

  31. La Mer VK (1952) Ind Eng Chem 44:1270

    Article  CAS  Google Scholar 

  32. Crooks RM, Zhao M, Sun L, Chechik V, Yeung LK (2001) Acc Chem Res 34:181

    Article  CAS  Google Scholar 

  33. Zheng J, Nicovich PR, Dickson RM (2007) Annu Rev Phys Chem 58:409

    Article  CAS  Google Scholar 

  34. Yamamoto K, Imaoka T, Chun WJ, Enoki O, Katoh H, Takenaga M, Sonoi A (2009) Nat Chem 1:397

    Article  CAS  Google Scholar 

  35. Mizugaki T, Kibata T, Ota K, Mitsudome T, Ebitani K, Jitsukawa K, Kaneda K (2009) Chem Lett 38:1118

    Article  CAS  Google Scholar 

  36. Ueno T, Suzuki M, Goto T, Matsumoto T, Nagayama K, Watanabe Y (2004) Angew Chem Int Ed 43:2527

    Article  CAS  Google Scholar 

  37. Tsunoyama H, Sakurai H, Ichikuni N, Negishi Y, Tsukuda T (2004) Langmuir 20:11293

    Article  CAS  Google Scholar 

  38. Abou-Hassan A, Sandre O, Cabuil V (2010) Angew Chem Int Ed 49:6268

    Article  CAS  Google Scholar 

  39. Tsunoyama H, Tsukuda T (2009) J Am Chem Soc 131:18216

    Article  CAS  Google Scholar 

  40. Fielicke A, von Helden G, Meijer G, Pedersen DB, Simard B, Rayner DM (2005) J Am Chem Soc 127:8416

    Article  CAS  Google Scholar 

  41. Fielicke A, von Helden G, Meijer G, Simard B, Rayner DM (2005) J Phys Chem B 109:23935

    Article  CAS  Google Scholar 

  42. Chen M, Cai Y, Yan Z, Goodman DW (2006) J Am Chem Soc 128:6341

    Article  CAS  Google Scholar 

  43. Freund H-J (2006) Catal Today 117:6

    Article  CAS  Google Scholar 

  44. Okumura M, Kitagawa Y, Kawakami T, Haruta M (2008) Chem Phys Lett 459:133

    Article  CAS  Google Scholar 

  45. Chaki NK, Tsunoyama H, Negishi Y, Sakurai H, Tsukuda T (2007) J Phys Chem C 111:4885

    Article  CAS  Google Scholar 

  46. Kanaoka S, Yagi N, Fukuyama Y, Aoshima S, Tsunoyama H, Tsukuda T, Sakurai H (2007) J Am Chem Soc 129:12060

    Article  CAS  Google Scholar 

  47. Kozlov AI, Kozlova AP, Liu H, Iwasawa Y (1999) Appl Catal A 182:9

    Article  CAS  Google Scholar 

  48. Grunwaldt JD, Kiener C, Wögerbauer C, Baiker A (1999) J Catal 181:223

    Article  CAS  Google Scholar 

  49. Choudhary TV, Sivadinarayana C, Chusuei CC, Datye AK, Fackler JP Jr, Goodman DW (2002) J Catal 207:247

    Article  CAS  Google Scholar 

  50. Tai Y, Murakami J, Tajiri K, Ohashi F, Date M, Tsubota S (2004) Appl Catal A 268:183

    Article  CAS  Google Scholar 

  51. Zheng N, Stucky GD (2006) J Am Chem Soc 128:14278

    Article  CAS  Google Scholar 

  52. Negishi Y, Nobusada K, Tsukuda T (2005) J Am Chem Soc 127:5261

    Article  CAS  Google Scholar 

  53. Shichibu Y, Negishi Y, Tsukuda T, Teranishi T (2005) J Am Chem Soc 127:13464

    Article  CAS  Google Scholar 

  54. Shichibu Y, Negishi Y, Tsunoyama H, Kanehara M, Teranishi T, Tsukuda T (2007) Small 3:835

    Article  CAS  Google Scholar 

  55. Negishi Y, Chaki NK, Shichibu Y, Whetten RL, Tsukuda T (2007) J Am Chem Soc 129:11322

    Article  CAS  Google Scholar 

  56. Chaki NK, Negishi Y, Tsunoyama H, Shichibu Y, Tsukuda T (2008) J Am Chem Soc 130:8608

    Article  CAS  Google Scholar 

  57. Tsunoyama H, Negishi Y, Tsukuda T (2006) J Am Chem Soc 128:6036

    Article  CAS  Google Scholar 

  58. Tsunoyama R, Tsunoyama H, Pannopard P, Limtrakul J, Tsukuda T (2010) J Phys Chem C 114:16004

    Article  CAS  Google Scholar 

  59. Liu Y, Tsunoyama H, Akita T, Tsukuda T (2009) J Phys Chem C 113:13457

    Article  CAS  Google Scholar 

  60. Liu Y, Tsunoyama H, Akita T, Tsukuda T (2010) Chem Lett 39:159

    Article  CAS  Google Scholar 

  61. Venugopal A, Scurrell MS (2003) Appl Catal A 245:137

    Article  CAS  Google Scholar 

  62. Domínguez MI, Romero-Sarria F, Centeno MA, Odriozola JA (2009) Appl Catal B 87:245

    Article  Google Scholar 

  63. Mitsudome T, Noujima A, Mizugaki T, Jitsukawa K, Kaneda K (2009) Chem Commun 5302

  64. Luo Q, Andrade JD (1998) J Coll Interface Sci 200:104

    Article  CAS  Google Scholar 

  65. Yan W, Brown S, Pan Z, Mahurin SM, Overbury SH, Dai S (2006) Angew Chem Int Ed 45:3614

    Article  CAS  Google Scholar 

  66. Schuchardt U, Cardoso D, Sercheli R, Pereira R, da Curz RS, Guerreiso MC, Mandelli D, Spinacé EV, Pires EL (2001) Appl Cat A 211:1

    Article  CAS  Google Scholar 

  67. Zhao R, Ji D, Lv G, Qian G, Yan L, Wang X, Suo J (2004) Chem Commun 904

  68. Lü G, Zhao R, Qian G, Qi Y, Wang X, Suo J (2004) Catal Lett 97:115

    Article  Google Scholar 

  69. Zhu KK, Hu JC, Richards R (2005) Catal Lett 100:195

    Article  CAS  Google Scholar 

  70. Xu YJ, Landon P, Enache D, Carley AF, Roberts MW, Hutchings GJ (2005) Catal Lett 101:175

    Article  CAS  Google Scholar 

  71. Xu LX, He CH, Zhu MQ, Fang S (2007) Catal Lett 114:202

    Article  CAS  Google Scholar 

  72. Xu LX, He CH, Zhu MQ, Wu KJ, Lai YL (2007) Catal Lett 118:248

    Article  CAS  Google Scholar 

  73. Hereijgers BPC, Weckhuysen BM (2010) J Catal 270:16

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by a Grant-in-Aid (no. 21245001) from MEXT and the CREST program of JST. HT was financially supported by a Research Fellowship from the Japan Society for the Promotion of Science for Young Scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Tsukuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsunoyama, H., Liu, Y., Akita, T. et al. Size-Controlled Synthesis of Gold Clusters as Efficient Catalysts for Aerobic Oxidation. Catal Surv Asia 15, 230–239 (2011). https://doi.org/10.1007/s10563-011-9125-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-011-9125-9

Keywords

Navigation