Skip to main content
Log in

Development of Ceria-Supported Ruthenium Catalysts Effective for Various Synthetic Reactions

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Our recent results on organic transformations such as C–C bond formation via the activation of stable C–C or C–H bonds and aerobic oxidation of alcohols catalyzed by CeO2-supported ruthenium are reviewed. A simple, recyclable heterogeneous Ru/CeO2 catalyst showed excellent activity for sequential transfer-allylation/isomerization of homoallyl alcohols with aldehydes to saturated ketones via the C–C bond activation. While homogeneous ruthenium and rhodium complex catalysts require additives and/or pressurized CO, the reaction with Ru/CeO2 smoothly proceeded in the absence of any additives. The Ru/CeO2 catalyst also showed excellent activity for the addition of sp2 C–H bonds of aromatic ketones to vinylsilanes. The Ru/CeO2 catalyst realized the chelation-assisted arylation of stable aromatic C–H bonds with aryl chlorides. The activity of the catalyst was greatly improved by the PPh3-modification under hydrogen atmosphere prior to the reactions. The catalyst acts heterogeneously without a significant leaching of ruthenium species, indicating that the Ru/CeO2 catalyst has an advantage over homogeneous catalysts from practical and environmental points of view. The effects of chemical and physical properties of CeO2 on the activity of CeO2-supported noble metal catalysts were examined. Porous CeO2 powders were prepared by the coagulation of solvothermally synthesized colloidal ceria nanoparticles, and the thus-prepared CeO2 powders showed an oxygen migration ability far superior to the CeO2 samples prepared by the usual precipitation method. The ruthenium catalysts supported on the former CeO2 powders showed a high activity for the aerobic oxidation of benzyl alcohol. The effects of the pore structure of CeO2 powders on the activity of the Ru/CeO2 catalysts are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Trovarelli A (2002) In: Hutchings GJ (ed) Catalysis by ceria and related materials. Catalytic Science Series, Imperial College Press, London

  2. Le Normand F, Hilaire L, Kili K, Krill G, Maire G (1988) J Phys Chem 92:2561

    Article  CAS  Google Scholar 

  3. Kašpar J, Fornasiero P, Graziani M (1999) Catal Today 50:285

    Article  Google Scholar 

  4. Bera P, Patil KC, Jayaram V, Subbanna GN, Hegde MS (2000) J Catal 196:293

    Article  CAS  Google Scholar 

  5. Bedrane S, Descorme C, Duprez D (2002) Catal Today 75:401

    Article  CAS  Google Scholar 

  6. Boaro M, Vicario M, de Leitenburg C, Dolcetti G, Trovarelli A (2003) Catal Today 77:407

    Article  CAS  Google Scholar 

  7. Lee JH (2003) J Mater Sci 38:4247

    Article  CAS  Google Scholar 

  8. Li R, Yabe S, Yamashita M, Momose S, Yoshida S, Yin S, Sato T (2002) Solid State Ionics 151:235

    Article  CAS  Google Scholar 

  9. Steele BCH (1999) Nature 400:619

    Article  CAS  Google Scholar 

  10. Steele BCH, Heinzel A (2001) Nature 414:345

    Article  CAS  Google Scholar 

  11. Yao HC, Yao YFY (1984) J Catal 86:254

    Article  CAS  Google Scholar 

  12. Gandhi HS, Graham GW, McCabe RW (2003) J Catal 216:433

    Article  CAS  Google Scholar 

  13. Christou SY, Costa CN, Efstathiou AM (2004) Top Catal 30:325

    Article  Google Scholar 

  14. Seo HJ, Yu EY (2005) J Ind Eng Chem 11:681

    CAS  Google Scholar 

  15. Imamura S, Tadani J, Saito Y, Okamoto Y, Jindai H, Kaito C (2000) Appl Catal A 201:121

    Article  CAS  Google Scholar 

  16. Bera P, Gayen A, Hegde MS, Lalla NP, Spadaro L, Frusteri F, Arena F (2003) J Phys Chem B 107:6122

    Article  CAS  Google Scholar 

  17. Imamura S, Higashihara T, Saito Y, Aritani H, Kanai H, Matsumura Y, Tsuda N (1999) Catal Today 50:369

    Article  CAS  Google Scholar 

  18. Imamura S, Denpo K, Kanai H, Yamane H, Saito Y, Utani K, Matsumura Y (2001) J Jpn Petrol Inst 44:293

    CAS  Google Scholar 

  19. Carrettin S, Guzman J, Corma A (2005) Angew Chem Int Ed 44:2242

    Article  CAS  Google Scholar 

  20. Corma A, González-Arellano C, Iglesias M, Sánchez F (2007) Angew Chem Int Ed 46:7820

    Article  CAS  Google Scholar 

  21. Hosokawa S, Nogawa S, Taniguchi M, Utani K, Kanai H, Imamura S (2005) Appl Catal A Gen 288:67

    Article  CAS  Google Scholar 

  22. Vocanson F, Guo YP, Namy JL, Kagan HB (1998) Synth Comm 28:2577

    Article  CAS  Google Scholar 

  23. Ji H, Mizugaki T, Ebitani K, Kaneda K (2002) Tetrahedron Lett 43:7179

    Article  CAS  Google Scholar 

  24. Ebitani K, Ji H, Mizugaki T, Kaneda K (2004) J Mol Catal A 212:161

    Article  CAS  Google Scholar 

  25. Barbier J Jr, Delanoë F, Jabouille F, Duprez D, Blanchard G, Isnard P (1998) J Catal 177:378

    Article  CAS  Google Scholar 

  26. Imamura S, Fukuda I, Ishida S (1988) Ind Eng Chem Res 27:718

    Article  CAS  Google Scholar 

  27. Izumi Y, Iwata Y, Aika K (1996) J Phys Chem 100:9421

    Article  CAS  Google Scholar 

  28. Mitsui T, Matsui T, Kikuchi R, Eguchi K (2009) Top Catal 52:464

    Article  CAS  Google Scholar 

  29. Hosokawa S, Fujinami Y, Kanai H (2005) J Mol Catal A Chem 240:49

    CAS  Google Scholar 

  30. Singh P, Hegde MS (2009) Chem Mater 21:3337

    Article  CAS  Google Scholar 

  31. Murahashi S (ed) (2004) Ruthenium in organic synthesis. Wiley-VCH, Weinheim

    Google Scholar 

  32. Noyori R (2003) Adv Syn Catal 345:15

    Article  CAS  Google Scholar 

  33. Grubbs RH (2004) Tetrahedron 60:7117

    Article  CAS  Google Scholar 

  34. Murai S, Kakiuchi F, Sekine S, Tanaka Y, Kamatani A, Sonoda M, Chatani N (1993) Nature 366:529

    Article  CAS  Google Scholar 

  35. Martinez R, Simon MO, Chevalier R, Pautigny C, Genet JP, Darses S (2009) J Am Chem Soc 131:7887

    Article  CAS  Google Scholar 

  36. Kondo T, Mitsudo T (2005) Chem Lett 34:1462

    Article  CAS  Google Scholar 

  37. Mitsudo T, Suzuki T, Zhang SW, Imai D, Fujita K, Manabe T, Shiotsuki M, Watanabe Y, Wada K, Kondo T (1999) J Am Chem Soc 121:1839

    Article  CAS  Google Scholar 

  38. Sheldon RA, Downing RS (1999) Appl Catal A Gen 189:163

    Article  CAS  Google Scholar 

  39. Kaneda K (2007) Synlett 2007:999

    Article  Google Scholar 

  40. Kondo T, Kodoi K, Nishinaga E, Okada T, Morisaki Y, Watanabe Y, Mitsudo T (1998) J Am Chem Soc 120:5587

    Article  CAS  Google Scholar 

  41. Hayashi S, Hirano K, Yorimitsu H, Oshima K (2006) J Am Chem Soc 128:2210

    Article  CAS  Google Scholar 

  42. Miura H, Wada K, Hosokawa S, Sai M, Kondo T, Inoue M (2009) Chem Commun 4112

  43. Lee CLK, Lee CHA, Tan KT, Loh TP (2004) Org Lett 6:1281 and references therein

  44. Miura H, Wada K, Hosokawa S, Inoue M (2010) ChemCatChem. doi:10.1002/cctc.201000144

  45. Oi S, Fukita S, Hirata N, Watanuki N, Miyano S, Inoue Y (2001) Org Lett 3:2579

    Article  CAS  Google Scholar 

  46. Ackermann L (2005) Org Lett 7:3123

    Article  CAS  Google Scholar 

  47. Özdemir I, Demir S, Çetinkaya B, Gourlaouen C, Maseras F, Bruneau C, Dixneuf PH (2008) J Am Chem Soc 130:1156

    Article  Google Scholar 

  48. Miura H, Wada K, Hosokawa S, Inoue M (2010) Chem Eur J 16:4186

    Article  CAS  Google Scholar 

  49. Guglielminotti E, Boccuzzi F, Manzoli M, Pinna F, Scarpa M (2000) J Catal 192:149

    Article  CAS  Google Scholar 

  50. Hosokawa S, Hayashi Y, Imamura S, Wada K, Inoue M (2009) Catal Lett 129:394

    Article  CAS  Google Scholar 

  51. Hosokawa S, Kanai H, Utani K, Taniguchi Y, Saito Y, Imamura S (2003) Appl Catal B Environ 45:181

    Article  CAS  Google Scholar 

  52. Yamamoto S, Kakihana M, Kato S (2000) J Alloys Compd 297:81

    Article  CAS  Google Scholar 

  53. Masui T, Fujiwara K, Machida K, Adachi G, Sakata T, Mori H (1997) Chem Mater 9:2197

    Article  CAS  Google Scholar 

  54. Hirano M, Kato E (1996) J Am Ceram Soc 79:777

    Article  CAS  Google Scholar 

  55. Inoue M, Kimura M, Inui T (1999) Chem Commun 975

  56. Kobayashi T, Hosokawa S, Iwamoto S, Inoue M (2006) J Am Ceram Soc 89:1205

    Article  CAS  Google Scholar 

  57. Kobayashi T, Iwamoto S, Inoue M (2006) J Alloys Compd 408–412:1149

    Article  Google Scholar 

  58. Hayashi Y, Hosokawa S, Imamura S, Inoue M (2007) J Ceram Soc Jpn 115:592

    Article  CAS  Google Scholar 

  59. Hayashi Y, Hosokawa S, Inoue M (2010) Microporous Mesoporous Mater 128:115

    Article  CAS  Google Scholar 

  60. Cotton FA, Wilkinson G (1966) Advanced inorganic chemistry: a comprehensive text, 2nd edn. John Wiley & Sons, New York, pp 1067–1068

    Google Scholar 

Download references

Acknowledgements

A part of this work was supported by a Grant-in-Aid for Scientific Research (No. 21360393 and 21651039) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Inoue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wada, K., Hosokawa, S. & Inoue, M. Development of Ceria-Supported Ruthenium Catalysts Effective for Various Synthetic Reactions. Catal Surv Asia 15, 1–11 (2011). https://doi.org/10.1007/s10563-010-9104-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-010-9104-6

Keywords

Navigation