Skip to main content

Advertisement

Log in

Support Modification of Supported Nickel Catalysts for Hydrogen Production by Auto-thermal Reforming of Ethanol

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Recent progress on support modification of supported nickel catalysts for hydrogen production by auto-thermal reforming of ethanol was reported in this review. Nickel catalysts supported on various materials, including metal oxides and metal oxide-stabilized mesoporous zirconias, were prepared by an incipient wetness impregnation method for use in hydrogen production by auto-thermal reforming of ethanol. Various experimental measurements such as NH3-TPD (temperature-programmed desorption) and TPR (temperature-programmed reduction) were carried out to elucidate the different catalytic performance of supported nickel catalysts. It was revealed that acid property of supporting materials served as one of the important factors determining the catalytic performance. Hydrogen yield over nickel catalysts supported on metal oxides showed a volcano-shaped curve with respect to acidity of the supports. Among the catalysts tested, Ni/ZrO2 catalyst with an intermediate acidity exhibited a superior catalytic performance. It was also observed that reducibility of nickel catalysts supported on metal oxide-stabilized mesoporous zirconias played a key role in determining the catalytic performance in the auto-thermal reforming of ethanol for hydrogen production. Hydrogen yield over nickel catalysts supported on metal oxide-stabilized zirconias increased with increasing reducibility of the catalysts (with decreasing TPR peak temperature of the catalysts).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fatsikostas AN, Verykios XE (2004) J Catal 225:439

    Article  CAS  Google Scholar 

  2. Denis A, Grzegorczyk W, Gac W, Machocki A (2008) Catal Today 137:453

    Article  CAS  Google Scholar 

  3. Badmaev SD, Snytnikov PV (2008) Int J Hydrogen Energy 33:3026

    Article  CAS  Google Scholar 

  4. Seo JG, Youn MH, Jung JC, Cho KM, Park S, Song IK (2008) Catal Today 138:130

    Article  CAS  Google Scholar 

  5. Seo JG, Youn MH, Cho KM, Park S, Lee SH, Lee J, Song IK (2008) Korean J Chem Eng 25:41

    Article  CAS  Google Scholar 

  6. Moon DJ, Ryu JW, Lee SD, Ahn BS (2002) Korean J Chem Eng 19:921

    Article  CAS  Google Scholar 

  7. Liu Y, Hayakawa T, Tsunoda T, Suzuki K, Hamakawa S, Murata K, Shiozaki R, Ishii T, Kumagai M (2003) Top Catal 22:205

    Article  CAS  Google Scholar 

  8. Cavallaro S, Chiodo V, Vita A, Freni S (2003) J Power Sources 123:10

    Article  CAS  Google Scholar 

  9. Silva AM, Barandas APMG, Costa LOO, Borges LEP, Mattos LV, Noronha FB (2007) Catal Today 129:297

    Article  CAS  Google Scholar 

  10. Ntaikou I, Gavala HN, Kornaros M, Lyberatos G (2008) Int J Hydrogen Energy 33:1159

    Google Scholar 

  11. Romero-Sarria F, Vargas JC, Roger A-C, Kiennemann A (2008) Catal Today 133:149

    Article  CAS  Google Scholar 

  12. Wang H, Ye JL, Liu Y, Li YD, Qin YN (2007) Catal Today 129:305

    Article  CAS  Google Scholar 

  13. Akande AJ, Idem RO, Dalai AK (2005) Appl Catal A 287:159

    Article  CAS  Google Scholar 

  14. Navarro RM, Alvarez-Galvan MC, Sanchez-Sanchez MC, Rosa F, Fierro JLG (2004) Appl Catal B 55:223

    Google Scholar 

  15. Ahmed S (2001) Int J Hydrogen Energy 26:291

    Article  CAS  Google Scholar 

  16. Youn MH, Seo JG, Park S, Park DR, Jung JC, Kim P, Song IK (2009) Renew Energy 34:731

    Article  CAS  Google Scholar 

  17. Velu S, Satoh N, Gopinath CS, Suzuki K (2002) Catal Lett 82:145

    Article  CAS  Google Scholar 

  18. Ni M, Leung DYC, Leung MKH (2007) Int J Hydrogen Energy 32:3238

    Article  CAS  Google Scholar 

  19. Rostrup-Nielsen JR, Sehested J, Nørskov JK (2002) Adv Catal 47:65

    Article  CAS  Google Scholar 

  20. Rostrup-Nielsen JR (2000) Catal Today 63:159

    Article  CAS  Google Scholar 

  21. Sehested J (2006) Catal Today 111:103

    Article  CAS  Google Scholar 

  22. Laosiripojana N, Assabumrungrat S, Charojrochkul S (2007) Appl Catal A 327:180

    Article  CAS  Google Scholar 

  23. Biswas P, Kunzru D (2008) Chem Eng J 136:41

    Article  CAS  Google Scholar 

  24. Kugai J, Subramani V, Song C, Engelhard MH, Chin Y-H (2006) J Catal 238:430

    Article  CAS  Google Scholar 

  25. Frusteri F, Freni S, Chiodo V, Donato S, Bonura G, Cavallaro S (2006) Int J Hydrogen Energy 31:2193

    Article  CAS  Google Scholar 

  26. Youn MH, Seo JG, Kim P, Kim JJ, Lee H-I, Song IK (2006) J Power Sources 162:1270

    Article  CAS  Google Scholar 

  27. Youn MH, Seo JG, Kim P, Song IK (2007) J Mol Catal A 261:276

    Article  CAS  Google Scholar 

  28. Vaidya PD, Rodrigues AE (2006) Chem Eng J 117:39

    Article  CAS  Google Scholar 

  29. Sánchez-Sánchez MC, Navarroand RM, Fierro JLG (2007) Int J Hydrogen Energy 32:1462

    Article  CAS  Google Scholar 

  30. Zhang J, Chen J, Ren J, Li Y, Sun Y (2003) Fuel 82:58

    CAS  Google Scholar 

  31. Luengo CA, Ciampi G, Cencig MO, Steckelberg C, Laborde MA (1992) Int J Hydrogen Energy 17:677

    Article  CAS  Google Scholar 

  32. Yang Y, Ma J, Wu F (2006) Int J Hydrogen Energy 31:877

    Article  CAS  Google Scholar 

  33. Klouz V, Fierro V, Denton P, Katz H, Lisse JP, Bouvot-Mauduit S, Mirodatos C (2002) J Power Sources 105:26

    Article  CAS  Google Scholar 

  34. Sun J, Qiu X, Wu F, Zhu W, Wang W, Hao S (2004) Int J Hydrogen Energy 29:1075

    Article  CAS  Google Scholar 

  35. Matsumura Y, Nakamori T (2004) Appl Catal A 258:107

    Article  CAS  Google Scholar 

  36. Seo JG, Youn MH, Song IK (2007) J Mol Catal A 268:9

    Article  CAS  Google Scholar 

  37. Qin X, Xianxiang S, Pinliang Y, Xiexian G (1986) React Kinet Catal Lett 31:279

    Article  Google Scholar 

  38. Youn MH, Seo JG, Cho KM, Jung JC, Kim H, La KW, Park DR, Park S, Lee SH, Song IK (2008) Korean J Chem Eng 25:236

    Article  CAS  Google Scholar 

  39. Youn MH, Seo JG, Park S, Jung JC, Park DR, Song IK (2008) Int J Hydrogen Energy 33:7457

    Article  CAS  Google Scholar 

  40. Teterycz H, Klimkiewicz R, Laniecki M (2003) Appl Catal A 249:313

    Article  CAS  Google Scholar 

  41. Bellido JDA, Assaf EM (2008) J Power Sources 177:24

    Article  CAS  Google Scholar 

  42. Youn MH, Seo JG, Jung JC, Park S, Song IK (2009) Int J Hydrogen Energy 34:5390

    Article  CAS  Google Scholar 

  43. Biswas P, Kunzru D (2007) Int J Hydrogen Energy 32:969

    Article  CAS  Google Scholar 

  44. Youn MH, Seo JG, Jung JC, Park S, Park DR, Lee SB, Song IK (2009) Catal Today 146:57

    Article  CAS  Google Scholar 

  45. Mori H, Wen C-J, Otomo J, Eguchi K, Takahashi H (2003) Appl Catal A 245:79

    Article  CAS  Google Scholar 

  46. Damyanova S, Pawelec B, Arishtirova K, Huerta MVN, Fierro JLG (2008) Appl Catal A 337:86

    Article  CAS  Google Scholar 

  47. Bellido JDA, Assaf EM (2009) Appl Catal A 352:179

    Article  CAS  Google Scholar 

  48. Raeder H, Norby T, Osborg PA (1995) Ceram Trans 51:719

    CAS  Google Scholar 

  49. Yamada T, Fukui T, Kodera Y, Matsubara H (1996) Ceram Trans 71:453

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge support from the Seoul Renewable Energy Research Consortium (Seoul R & BD Program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In Kyu Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Youn, M.H., Seo, J.G., Jung, J.C. et al. Support Modification of Supported Nickel Catalysts for Hydrogen Production by Auto-thermal Reforming of Ethanol. Catal Surv Asia 14, 55–63 (2010). https://doi.org/10.1007/s10563-010-9087-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-010-9087-3

Keywords

Navigation