Skip to main content

Advertisement

Log in

Mesoporous Nickel–Alumina Catalysts for Hydrogen Production by Steam Reforming of Liquefied Natural Gas (LNG)

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Recent progress on the mesoporous nickel–alumina catalysts for hydrogen production by steam reforming of liquefied natural gas (LNG) was reported in this review. A number of mesoporous nickel–alumina composite catalysts were prepared by a single-step surfactant-templating method using cationic, anionic, and non-ionic surfactant as structure-directing agents for use in hydrogen production by steam reforming of LNG. For comparison, nickel catalysts supported on mesoporous aluminas were also prepared by an impregnation method. The effect of preparation method and surfactant identity on physicochemical properties and catalytic activities of mesoporous nickel–alumina catalysts in the steam reforming of LNG was investigated. Regardless of preparation method and surfactant identity, nickel oxide species were finely dispersed on the surface of mesoporous nickel–alumina catalysts through the formation of surface nickel aluminate phase. However, nickel dispersion and nickel surface area of mesoporous nickel–alumina catalysts were strongly affected by the preparation method and surfactant identity. It was found that nickel surface area of mesoporous nickel–alumina catalyst served as one of the important factors determining the catalytic performance in hydrogen production by steam reforming of LNG. Among the catalysts tested, a mesoporous nickel–alumina composite catalyst prepared by a single-step non-ionic surfactant-templating method exhibited the best catalytic performance due to its highest nickel surface area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schrope M (2001) Nature 414:682

    Article  CAS  Google Scholar 

  2. Simpson AP, Lutz AE (2007) Int J Hydrogen Energy 32:4811

    Article  CAS  Google Scholar 

  3. Navarro RM, Pena MA, Fierro JLG (2007) Chem Rev 107:3952

    Article  CAS  Google Scholar 

  4. Maluf SS, Assaf EM (2009) Fuel 88:1547

    Article  CAS  Google Scholar 

  5. Seo JG, Youn MH, Cho KM, Park S, Lee SH, Lee J, Song IK (2008) Korean J Chem Eng 25:41

    Article  CAS  Google Scholar 

  6. Seo JG, Youn MH, Park S, Lee J, Lee SH, Lee H, Song IK (2008) Korean J Chem Eng 25:95

    Article  CAS  Google Scholar 

  7. Rostrup-Nielsen JR, Sehested J, Nørskov JK (2002) Adv Catal 47:65

    Article  CAS  Google Scholar 

  8. Ko JD, Lee JK, Park D, Shin SH (1995) Korean J Chem Eng 12:478

    Article  CAS  Google Scholar 

  9. Jones G, Jakobsen JG, Shim SS, Kleis J, Andersson MP, Abild-Pedersen F, Bligaard T, Helveg S, Hinnemann B, Rostrup-Nielsen JR, Chorkendorff I, Sehested J, Nørskov JK (2008) J Catal 259:147

    Article  CAS  Google Scholar 

  10. Luna EC, Becerra AM, Dimitrijewits MI (1999) React Kinet Catal Lett 67:247

    Article  CAS  Google Scholar 

  11. Wei J, Iglesia E (2004) J Catal 224:370

    Article  CAS  Google Scholar 

  12. Hu YH, Ruckenstein E (2004) Adv Catal 48:297

    Article  CAS  Google Scholar 

  13. Rostrup-Nielsen JR (2000) Catal Today 63:159

    Article  CAS  Google Scholar 

  14. Sehested J, Gelten AP, Remediakis IN, Bengaard H, Nørskov JK (2004) J Catal 223:432

    Article  CAS  Google Scholar 

  15. Armor JN (1999) Appl Catal A Gen 176:159

    Article  CAS  Google Scholar 

  16. Berman A, Karn RK, Epstein M (2005) Appl Catal A Gen 282:73

    Article  CAS  Google Scholar 

  17. Kochloefl K (1997) In: Ertl G, Knözinger H, Weitkamp J (eds) Handbook of heterogeneous catalysis, vol 4. Wiley, New York, p 1819

    Google Scholar 

  18. Borowiecki T, Gołębiowski A, Stasińska B (1997) Appl Catal A Gen 153:141

    Article  CAS  Google Scholar 

  19. Borowiecki T, Gac W, Denis A (2004) Appl Catal A Gen 270:27

    Article  CAS  Google Scholar 

  20. Lisboa JS, Santos DCRM, Passos FB, Noronha FB (2005) Catal Today 101:15

    Article  CAS  Google Scholar 

  21. Hegarty MES, O’Connor AM, Ross JRH (1998) Catal Today 42:225

    Article  CAS  Google Scholar 

  22. Kępiński L, Stasińska B, Borowiecke T (2000) Carbon 38:1845

    Article  Google Scholar 

  23. Seo JG, Youn MH, Park S, Jung JC, Kim P, Song IK (2009) J Power Sources 186:178

    Article  CAS  Google Scholar 

  24. Natesakhawat S, Watson RB, Wang X, Ozkan US (2005) J Catal 234:496

    Article  CAS  Google Scholar 

  25. Kim J-H, Suh DJ, Park T-J, Kim K-L (2000) Appl Catal A Gen 197:191

    Article  CAS  Google Scholar 

  26. Suh DJ, Park T-J, Kim J-H, Kim K-L (1998) J Non-Cryst Solids 225:168

    Article  CAS  Google Scholar 

  27. Choi J, Suh DJ (2007) Catal Surv Asia 11:123

    Article  CAS  Google Scholar 

  28. Seo JG, Youn MH, Lee H-I, Kim JJ, Yang E, Chung JS, Kim P, Song IK (2008) Chem Eng J 141:298

    Article  CAS  Google Scholar 

  29. Yamazaki O, Tomishige K, Fujimoto K (1996) Appl Catal A Gen 135:49

    Article  Google Scholar 

  30. Roh H-S, Jun K-W, Park S-E (2003) Appl Catal A Gen 251:275

    Article  CAS  Google Scholar 

  31. Li G, Hu L, Hill JM (2006) Appl Catal A Gen 301:16

    Article  CAS  Google Scholar 

  32. Rotgerink HGJL, Ommen JGV, Ross JRH (1987) Stud Surf Sci Catal 31:795

    Article  Google Scholar 

  33. Puxley DC, Kitchener IJ, Komodromos C, Parkyns ND (1983) Stud Surf Sci Catal 16:237

    Article  CAS  Google Scholar 

  34. Kim P, Kim Y, Kim H, Song IK, Yi J (2004) Appl Catal A Gen 272:157

    Article  CAS  Google Scholar 

  35. Kim P, Kim Y, Kang T, Song IK, Yi J (2007) Catal Surv Asia 11:49

    Article  Google Scholar 

  36. Seo JG, Youn MH, Song IK (2009) Int J Hydrogen Energy 34:1809

    Article  CAS  Google Scholar 

  37. Seo JG, Youn MH, Park S, Park DR, Jung JC, Chung JS, Song IK (2009) Catal Today 146:44

    Article  CAS  Google Scholar 

  38. Kim P, Joo JB, Kim H, Kim W, Kim Y, Song IK, Yi J (2005) Catal Lett 104:181

    Article  CAS  Google Scholar 

  39. Ray JC, You K-S, Ahn J-W, Ahn W-S (2007) Micropor Mesopor Mater 100:183

    Article  CAS  Google Scholar 

  40. Bagshaw SA, Pinnavaia TJ (1996) Angew Chem Int Ed 35:1102

    Article  CAS  Google Scholar 

  41. Seo JG, Youn MH, Park DR, Jung JC, Song IK (2009) Catal Lett 132:395

    Article  CAS  Google Scholar 

  42. González-Peńa V, Márquez-Alvarez C, Díaz I, Grande M, Blasco T, Pérez-Pariente J (2005) Micropor Mesopor Mater 80:173

    Article  Google Scholar 

  43. Tanev PT, Pinnavaia TJ (1996) Chem Mater 8:2068

    Article  CAS  Google Scholar 

  44. Liu Q, Wang A, Wang X, Zhang T (2006) Micorpor Mesopor Mater 92:10

    Article  CAS  Google Scholar 

  45. Rouquerol F, Rouquerol J, Sing K (eds) (1999) Adsorption by powders and porous solids. Academic Press, San Diego, p 204

    Google Scholar 

  46. Pelletier L, Liu DDS (2007) Appl Catal A Gen 317:293

    Article  CAS  Google Scholar 

  47. Kim P, Kim Y, Kim C, Kim H, Park Y, Lee JH, Song IK, Yi J (2003) Catal Lett 89:185

    Article  CAS  Google Scholar 

  48. Park Y, Kang T, Lee J, Kim P, Kim H, Yi J (2004) Catal Today 97:195

    Article  CAS  Google Scholar 

  49. Voort PVD, Benjelloun M, Vansant EF (2003) J Phys Chem B 106:9027

    Article  Google Scholar 

  50. Ross JRH, Steel MCF, Zeith-Isfahani A (1978) J Catal 52:280

    Article  CAS  Google Scholar 

  51. Dimotakis ED, Pinnavaia TJ (1990) Inorg Chem 29:2393

    Article  CAS  Google Scholar 

  52. Kim P, Kim Y, Kim H, Song IK, Yi J (2005) J Mol Catal A Chem 231:247

    Article  CAS  Google Scholar 

  53. Rynkowski JM, Paryczak T, Lenik M (1992) Appl Catal A Gen 106:73

    Article  Google Scholar 

  54. Youn MH, Seo JG, Kim P, Song IK (2007) J Mol Catal A Chem 261:276

    Article  CAS  Google Scholar 

  55. Kharat AN, Pendleton P, Badalyan A, Abedini M, Amini MM (2002) J Catal 205:7

    Article  CAS  Google Scholar 

  56. Cimino A, Jacono ML, Schiavello M (1971) J Phys Chem 75:1044

    Article  CAS  Google Scholar 

  57. Sehested J (2004) J Catal 223:432

    Article  CAS  Google Scholar 

  58. Forzatti P, Lietti L (1999) Catal Today 52:165

    Article  CAS  Google Scholar 

  59. Trimm DL (1987) Stud Surf Sci Catal 36:39

    Article  Google Scholar 

  60. Matsumura Y, Nakamori T (2004) Appl Catal A Gen 258:107

    Article  CAS  Google Scholar 

  61. Ross JRH, Steel MCF, Zeini-Asfanani A (eds) (1975) Mechanisms of hydrocarbon reactions. Elsevier Science, Amsterdam, p 201

    Google Scholar 

  62. Rostrup-Nielsen JR, Trimm DL (1977) J Catal 48:155

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge support from the Seoul Renewable Energy Research Consortium (Seoul R & BD Program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In Kyu Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seo, J.G., Youn, M.H. & Song, I.K. Mesoporous Nickel–Alumina Catalysts for Hydrogen Production by Steam Reforming of Liquefied Natural Gas (LNG). Catal Surv Asia 14, 1–10 (2010). https://doi.org/10.1007/s10563-009-9082-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-009-9082-8

Keywords

Navigation