Catalysis Surveys from Asia

, Volume 11, Issue 4, pp 186–191 | Cite as

Cracking of Cellulose over Supported Metal Catalysts



Cellulose is cracked over supported Pt or Ru catalysts under hydrogenolysis conditions in water to give sorbitol as a main product. Among the catalysts tested, Pt/γ-Al2O3 gave the highest yield and selectivity, and this catalyst was recyclable in repeated runs. It is proposed that cellulose is hydrolyzed by in situ generated acid sites to form glucose, and glucose is immediately reduced to sorbitol over the metal catalyst.


Cellulose Sorbitol Supported metal catalyst Biomass Bio-refinery 


  1. 1.
    Klass DL (1998) Biomass for renewable energy, fuels, and chemicals. Academic Press, San DiegoGoogle Scholar
  2. 2.
    Fan LT, Gharpuray MM, Lee Y-H (1987) Cellulose hydrolysis. Springer-Verlag, BerlinGoogle Scholar
  3. 3.
    Danner H, Braun R (1999) Chem Soc Rev 28:395CrossRefGoogle Scholar
  4. 4.
    Zhang YP, Lynd LR (2004) Biotechnol Bioeng 88:797CrossRefGoogle Scholar
  5. 5.
    Krässig HA (1993) Cellulose—structure, accessibility and reactivity. Gordon and Breach Science Pub., YverdonGoogle Scholar
  6. 6.
  7. 7.
    Dhepe PL, Ohashi M, Inagaki S, Ichikawa M, Fukuoka A (2005) Catal Lett 102:163CrossRefGoogle Scholar
  8. 8.
  9. 9.
    Saeman JF (1945) Ind Eng Chem 37:43CrossRefGoogle Scholar
  10. 10.
    Asadullah M, Fujimoto K, Tomishige K (2001) Ind Eng Chem Res 40:5894CrossRefGoogle Scholar
  11. 11.
    Garcia L, Salvador ML, Arauzo J, Bilbao R (1998) Ind Eng Chem Res 37:3812CrossRefGoogle Scholar
  12. 12.
    Coughlan MP (1992) Biores Tech 39:107CrossRefGoogle Scholar
  13. 13.
    Sasaki M, Fang Z, Fukushima Y, Adschiri T, Arai K (2000) Ind Eng Chem Res 39:2883CrossRefGoogle Scholar
  14. 14.
    Sakaki T, Shibata M, Sumi T, Yasuda S (2002) Ind Eng Chem Res 41:661CrossRefGoogle Scholar
  15. 15.
    Abbadi A, Gotlieb KF, van Bekkum H (1998) Starch 50:23CrossRefGoogle Scholar
  16. 16.
    Fukuoka A, Dhepe PL (2006) Angew Chem Int Ed 45:5161CrossRefGoogle Scholar
  17. 17.
    Jacobs P, Hinnekens H (Synfina-Oleofina), EP0329923 (1989)Google Scholar
  18. 18.
    Yan N, Zhao C, Luo C, Dyson P, Liu H, Kou Y (2006) J Am Chem Soc 128:8714CrossRefGoogle Scholar
  19. 19.
    Hattori H, Shishido T (1997) Cata Surv Jpn 1:205CrossRefGoogle Scholar
  20. 20.
    Werpy T, Petersen G (2004) Top value added chemicals from biomass, vol 1: results of screening for potential candidates from sugars and synthesis gas. US Department of Energy, Energy Efficiency and Renewable Energy, Battelle,
  21. 21.
    Gallezot P, Cerino PJ, Blanc B, Flèche G, Fuertes P (1994) J Catal 146:93CrossRefGoogle Scholar
  22. 22.
    Wulf PD, Soetaert W, Vandamme EJ (2000) Biotechnol Bioeng 69:339CrossRefGoogle Scholar
  23. 23.
    Huber GW, Shabaker JW, Dumesic JA (2003) Science 300:2075CrossRefGoogle Scholar
  24. 24.
    Davda RR, Dumesic JA (2004) Chem Commun 36Google Scholar
  25. 25.
    Brown AT, Patterson CE (1973) Archs Oral Biol 18:127CrossRefGoogle Scholar
  26. 26.
    Kono H, Yunoki S, Shikano T, Fujiwara M, Erata T, Takai M (2002) J Am Chem Soc 124:7506CrossRefGoogle Scholar
  27. 27.
    Zhao H, Kwak JH, Wang Y, Franz JA, White JM, Holladay JE (2006) Energy & Fuels 20:807CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Catalysis Research CenterHokkaido UniversitySapporoJapan
  2. 2.CREST, Japan Science and Technology AgencyKawaguchiJapan
  3. 3.Inorganic and Catalysis DivisionNational Chemical LaboratoryPuneIndia

Personalised recommendations