Skip to main content
Log in

Ni-based Catalyst Development for the Catalytic Conversion of CO2 to Substitute Natural Gas—Effect of Preparation Method

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Substitute Natural Gas (SNG) is receiving discernible attention as a fuel for the next generations because of the growing energy demand, and fossil fuels are depleting. On the other hand, CO2 emissions are already increasing, so catalytic conversion of CO2 to SNG is a promising way to reduce atmospheric CO2. However, CO2 conversion is not so easy because of its stable properties. So, there is a need for a suitable catalyst that can solve problems such as CO2 conversion, CH4 yield, catalyst deactivation and related issues. Here, we report the effect of the catalyst preparation method and the effect of precipitating agents on the problems mentioned earlier. The 5 series of Al2O3-supported Ni-based and Ni–Fe bimetallic catalysts are prepared by impregnation and coprecipitation methods and characterized by H2-TPR, XRD, H2-TPD, and CO2-TPD, NH3-TPD techniques. The reactions are carried out with TPSR by using a pulse injection technique, which showed a range of CH4 formation and CO2 conversion with a CO2:H2 ratio of 1:4. The 15(Ni–Fe)/Al2O3 showed almost 2 times better conversion and 1.5 times yield at a lower temperature (300 °C) compared to the other prepared catalysts. These findings are promising and suggest that Ni–Fe catalysts prepared by coprecipitation method are favoured for SNG production and could lead to more efficient and cost-effective process development.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The experimental data are already included in this article in the form of graphs and tables. Additional information will be provided upon request.

References

  1. P. Framework, “Carbon Capture, Utilization and Storage (CCUS),” no. November, 2022.

  2. Younas M, Sohail M, Leong LK, Bashir MJK, Sumathi S (2016) Feasibility of CO2 adsorption by solid adsorbents: a review on low-temperature systems. Int J Environ Sci Technol 13(7):1839–1860. https://doi.org/10.1007/s13762-016-1008-1

    Article  CAS  Google Scholar 

  3. Yusuf N, Almomani F, Qiblawey H (2023) Catalytic CO2 conversion to C1 value-added products: Review on latest catalytic and process developments. Fuel 345:128178. https://doi.org/10.1016/j.fuel.2023.128178

    Article  CAS  Google Scholar 

  4. Tan CH, Nomanbhay S, Shamsuddin AH, Park Y-K, Hernández-Cocoletzi H, Show PL (2022) Current Developments in Catalytic Methanation of Carbon Dioxide—A Review. Front Energy Res 9(January):1–7. https://doi.org/10.3389/fenrg.2021.795423

    Article  CAS  Google Scholar 

  5. Hussain I, Jalil AA, Hassan NS, Hamid MYS (2021) Recent advances in catalytic systems for CO2 conversion to substitute natural gas (SNG): Perspective and challenges. J Energy Chem 62:377–407. https://doi.org/10.1016/j.jechem.2021.03.040

    Article  CAS  Google Scholar 

  6. Goeppert A, Czaun M, Jones J-P, Surya Prakash GK, Olah GA (2014) Recycling of carbon dioxide to methanol and derived products – closing the loop. Chem. Soc. Rev 43(23):7995–8048. https://doi.org/10.1039/C4CS00122B

    Article  CAS  PubMed  Google Scholar 

  7. Li C, Yuan X, Fujimoto K (2014) Development of highly stable catalyst for methanol synthesis from carbon dioxide. Appl Catal A Gen 469:306–311. https://doi.org/10.1016/j.apcata.2013.10.010

    Article  CAS  Google Scholar 

  8. Artz J et al (2018) Sustainable Conversion of Carbon Dioxide: An Integrated Review of Catalysis and Life Cycle Assessment. Chem Rev 118(2):434–504. https://doi.org/10.1021/acs.chemrev.7b00435

    Article  CAS  PubMed  Google Scholar 

  9. Pham CQ et al (2022) Carbon dioxide methanation on heterogeneous catalysts: a review. Environ Chem Lett 20(6):3613–3630. https://doi.org/10.1007/s10311-022-01483-0

    Article  CAS  Google Scholar 

  10. Alper E, YukselOrhan O (2017) CO2 utilization: Developments in conversion processes. Petroleum 3(1):109–126. https://doi.org/10.1016/j.petlm.2016.11.003

    Article  Google Scholar 

  11. Liu G et al (2023) Integrated CO2 capture and utilisation: A promising step contributing to carbon neutrality. Carbon Capture Sci. Technol. 7:100116. https://doi.org/10.1016/j.ccst.2023.100116

    Article  CAS  Google Scholar 

  12. Miguel CV, Mendes A, Madeira LM (2018) Intrinsic kinetics of CO2 methanation over an industrial nickel-based catalyst. J CO2 Util 25:128–136. https://doi.org/10.1016/j.jcou.2018.03.011

    Article  CAS  Google Scholar 

  13. Kreitz B, Wehinger GD, Turek T (2019) Dynamic simulation of the CO2 methanation in a micro-structured fixed-bed reactor. Chem Eng Sci 195:541–552. https://doi.org/10.1016/j.ces.2018.09.053

    Article  CAS  Google Scholar 

  14. Fors SA, Malapit CA (2023) Homogeneous Catalysis for the Conversion of CO2, CO, CH3OH, and CH4 to C2+ Chemicals via C-C Bond Formation. ACS Catal 13(7):4231–4249. https://doi.org/10.1021/acscatal.2c05517

    Article  CAS  Google Scholar 

  15. Lv Z, Chen S, Huang X, Qin C (2023) Recent progress and perspective on integrated CO2 capture and utilization. Curr Opin Green Sustain Chem 40:100771. https://doi.org/10.1016/j.cogsc.2023.100771

    Article  CAS  Google Scholar 

  16. Rönsch S et al (2016) Review on methanation - From fundamentals to current projects. Fuel 166:276–296. https://doi.org/10.1016/j.fuel.2015.10.111

    Article  CAS  Google Scholar 

  17. B. Gasification, “Used for Syn-Gas Production and Tar Removal After,” 4(4):1520–1535, 2005.

  18. Provendier H, Petit C, Estournès C, Libs S, Kiennemann A (1999) Stabilisation of active nickel catalysts in partial oxidation of methane to synthesis gas by iron addition. Appl Catal A Gen 180(1–2):163–173. https://doi.org/10.1016/S0926-860X(98)00343-3

    Article  CAS  Google Scholar 

  19. Schrick B, Blough JL, Jones AD, Mallouk TE (2002) Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chem Mater 14(12):5140–5147. https://doi.org/10.1021/cm020737i

    Article  CAS  Google Scholar 

  20. Pandey D, Deo G (2016) Effect of support on the catalytic activity of supported Ni–Fe catalysts for the CO2 methanation reaction. J Ind Eng Chem 33:99–107. https://doi.org/10.1016/j.jiec.2015.09.019

    Article  CAS  Google Scholar 

  21. Jung Y, Yoon W, Seo Y, Rhee Y (2012) The effect of precipitants on Ni-Al 2 O 3 catalysts prepared by a co-precipitation method for internal reforming in molten carbonate fuel cells. CATCOM 26:103–111. https://doi.org/10.1016/j.catcom.2012.04.029

    Article  CAS  Google Scholar 

  22. Hwang S et al (2013) Methanation of carbon dioxide over mesoporous Ni-Fe-Al2O3 catalysts prepared by a coprecipitation method: Effect of precipitation agent. J Ind Eng Chem 19(6):2016–2021. https://doi.org/10.1016/j.jiec.2013.03.015

    Article  CAS  Google Scholar 

  23. Duan L, Shi D (2021) Technological innovation, market proximity, and China’s industrial green development. Chinese J Popul Resour Environ 19(1):1–11. https://doi.org/10.1016/j.cjpre.2021.12.001

    Article  Google Scholar 

  24. Kumari R, Sengupta S (2020) Catalytic CO2 reforming of CH4 over MgAl2O4 supported Ni-Co catalysts for the syngas production. Int J Hydrogen Energy 45(43):22775–22787. https://doi.org/10.1016/j.ijhydene.2020.06.150

    Article  CAS  Google Scholar 

  25. Heracleous E, Lee AF, Wilson K, Lemonidou AA (2005) Investigation of Ni-based alumina-supported catalysts for the oxidative dehydrogenation of ethane to ethylene: Structural characterization and reactivity studies. J Catal 231(1):159–171. https://doi.org/10.1016/j.jcat.2005.01.015

    Article  CAS  Google Scholar 

  26. Wu M, Hercules DM (1979) Studies of supported nickel catalysts by X-ray photoelectron and ion scattering spectroscopies. J Phys Chem 83(15):2003–2008. https://doi.org/10.1021/j100478a015

    Article  CAS  Google Scholar 

  27. Pandey D, Deo G (2014) Promotional effects in alumina and silica supported bimetallic Ni-Fe catalysts during CO2 hydrogenation. J Mol Catal A Chem 382:23–30. https://doi.org/10.1016/j.molcata.2013.10.022

    Article  CAS  Google Scholar 

  28. Yin L et al (2022) Insight into the role of Fe on catalytic performance over the hydrotalcite-derived Ni-based catalysts for CO2 methanation reaction. Int J Hydrogen Energy 47(11):7139–7149. https://doi.org/10.1016/j.ijhydene.2021.12.057

    Article  CAS  Google Scholar 

  29. Guo J, Lou H, Zhao H, Chai D, Zheng X (2004) Dry reforming of methane over nickel catalysts supported on magnesium aluminate spinels. Appl Catal A Gen 273(1–2):75–82. https://doi.org/10.1016/j.apcata.2004.06.014

    Article  CAS  Google Scholar 

  30. Maia MP, Rodrigues MA, Passos FB (2007) Nitrate catalytic reduction in water using niobia supported palladium-copper catalysts. Catal Today 123(1–4):171–176. https://doi.org/10.1016/j.cattod.2007.01.051

    Article  CAS  Google Scholar 

  31. Tian D, Liu Z, Li D, Shi H, Pan W, Cheng Y (2013) Bimetallic Ni-Fe total-methanation catalyst for the production of substitute natural gas under high pressure. Fuel 104:224–229. https://doi.org/10.1016/j.fuel.2012.08.033

    Article  CAS  Google Scholar 

  32. Brown R, Cooper ME, Whan DA (1982) Temperature programmed reduction of alumina-supported iron, cobalt and nickel bimetallic catalysts. Appl Catal 3(2):177–186. https://doi.org/10.1016/0166-9834(82)80090-0

    Article  CAS  Google Scholar 

  33. Kang SH et al (2011) Co-methanation of CO and CO2 on the NiX-Fe1-X/Al2O3 catalysts; effect of Fe contents. Korean J Chem Eng 28(12):2282–2286. https://doi.org/10.1007/s11814-011-0125-2

    Article  CAS  Google Scholar 

  34. Punnoose A, Shah N, Huffman GP, Seehra MS (2003) X-ray diffraction and electron magnetic resonance studies of M/Fe/Al2O3 (M=Ni, Mo and Pd) catalysts for CH4 to H2 conversion. Fuel Process. Technol 83(1):263–273. https://doi.org/10.1016/S0378-3820(03)00074-2

    Article  CAS  Google Scholar 

  35. Zhang L, Wang X, Tan B, Ozkan US (2009) Effect of preparation method on structural characteristics and propane steam reforming performance of Ni-Al2O3 catalysts. J Mol Catal A Chem 297(1–2):26–34. https://doi.org/10.1016/j.molcata.2008.09.011

    Article  CAS  Google Scholar 

  36. Arunajatesan V, Subramaniam B, Hutchenson KW, Herkes FE (2007) In situ FTIR investigations of reverse water gas shift reaction activity at supercritical conditions. Chem Eng Sci 62(18–20):5062–5069. https://doi.org/10.1016/j.ces.2007.01.010

    Article  CAS  Google Scholar 

  37. Hu X, Lu G (2010) Comparative study of alumina-supported transition metal catalysts for hydrogen generation by steam reforming of acetic acid. Appl Catal B Environ 99(1–2):289–297. https://doi.org/10.1016/j.apcatb.2010.06.035

    Article  CAS  Google Scholar 

  38. Rynkowski JM, Paryjczak T, Lenik M (1993) On the nature of oxidic nickel phases in NiO/γ-Al2O3 catalysts. Appl Catal A Gen 106(1):73–82. https://doi.org/10.1016/0926-860X(93)80156-K

    Article  CAS  Google Scholar 

  39. Ray K, Deo G (2017) A potential descriptor for the CO2 hydrogenation to CH4 over Al2O3 supported Ni and Ni-based alloy catalysts. Appl Catal B Environ 218:525–537. https://doi.org/10.1016/j.apcatb.2017.07.009

    Article  CAS  Google Scholar 

  40. Ma Y, Liu J, Chu M, Yue J, Cui Y, Xu G (2020) Cooperation Between Active Metal and Basic Support in Ni-Based Catalyst for Low-Temperature CO2 Methanation. Catal Letters 150(5):1418–1426. https://doi.org/10.1007/s10562-019-03033-w

    Article  CAS  Google Scholar 

  41. Li H, Ren J, Qin X, Qin Z, Lin J, Li Z (2015) Ni/SBA-15 catalysts for CO methanation: effects of V, Ce, and Zr promoters. RSC Adv 5(117):96504–96517. https://doi.org/10.1039/c5ra15990c

    Article  CAS  Google Scholar 

  42. Jeffery T (1987) HYdrogenation of carbon monoxide over sio2-supported Fe-Co, Co-Ni and Ni-Fe bimetallic catalysts. Synthesis 1:70–71

    Article  Google Scholar 

  43. Pan Q, Peng J, Sun T, Wang S, Wang S (2014) Insight into the reaction route of CO2 methanation: Promotion effect of medium basic sites. Catal Commun 45:74–78. https://doi.org/10.1016/j.catcom.2013.10.034

    Article  CAS  Google Scholar 

  44. Aziz MAA, Jalil AA, Triwahyono S, Mukti RR, Taufiq-Yap YH, Sazegar MR (2014) Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation. Appl Catal B Environ 147:359–368. https://doi.org/10.1016/j.apcatb.2013.09.015

    Article  CAS  Google Scholar 

  45. Pérez-Hernández R et al (2023) “Carbon cycle using the CO2 conversion to methane as environmental feasibility on Ni/TiO2-Na nanotubes catalysts”, Renew. Energy 217:2–11. https://doi.org/10.1016/j.renene.2023.119145

    Article  CAS  Google Scholar 

  46. Tada S, Ochieng OJ, Kikuchi R, Haneda T, Kameyama H (2014) Promotion of CO2 methanation activity and CH4 selectivity at low temperatures over Ru/CeO2/Al2O 3 catalysts. Int J Hydrogen Energy 39(19):10090–10100. https://doi.org/10.1016/j.ijhydene.2014.04.133

    Article  CAS  Google Scholar 

  47. Méndez-mateos D, Laura Barrio V, Requies JM, Cambra JF (2021) Effect of the addition of alkaline earth and lanthanide metals for the modification of the alumina support in ni and ru catalysts in co2 methanation. Catalysts 11(3):1–28. https://doi.org/10.3390/catal11030353

    Article  CAS  Google Scholar 

  48. Rodríguez-González L, Hermes F, Bertmer M, Rodríguez-Castellón E, Jiménez-López A, Simon U (2007) The acid properties of H-ZSM-5 as studied by NH3-TPD and 27Al-MAS-NMR spectroscopy. Appl Catal A Gen 328(2):174–182. https://doi.org/10.1016/j.apcata.2007.06.003

    Article  CAS  Google Scholar 

  49. Chen L, Janssens TVW, Skoglundh M, Grönbeck H (2019) Interpretation of NH 3 -TPD Profiles from Cu-CHA Using First-Principles Calculations. Top Catal 62(1–4):93–99. https://doi.org/10.1007/s11244-018-1095-y

    Article  CAS  Google Scholar 

  50. Sehested J et al (2007) Discovery of technical methanation catalysts based on computational screening. Top Catal 45(1–4):9–13. https://doi.org/10.1007/s11244-007-0232-9

    Article  CAS  Google Scholar 

  51. Kustov AL, Frey AM, Larsen KE, Johannessen T, Nørskov JK, Christensen CH (2007) CO methanation over supported bimetallic Ni-Fe catalysts: From computational studies towards catalyst optimization. Appl Catal A Gen 320:98–104. https://doi.org/10.1016/j.apcata.2006.12.017

    Article  CAS  Google Scholar 

  52. Le TA, Kim TW, Lee SH, Park ED (2017) CO and CO2 methanation over Ni catalysts supported on alumina with different crystalline phases. Korean J Chem Eng 34(12):3085–3091. https://doi.org/10.1007/s11814-017-0257-0

    Article  CAS  Google Scholar 

  53. Van Herwijnen T, Van Doesburg H, De Jong WA (1973) Kinetics of the methanation of CO and CO2 on a nickel catalyst. J Catal 28(3):391–402. https://doi.org/10.1016/0021-9517(73)90132-2

    Article  Google Scholar 

  54. Franken T, Heel A (2020) Are Fe based catalysts an upcoming alternative to Ni in CO2 methanation at elevated pressure? J. CO2 Util. 39:101175. https://doi.org/10.1016/j.jcou.2020.101175

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Priyanshu Singh and Shweta Kamaliny from the Department of Chemical Engineering, IIT(ISM)DHANBAD, whose input was greatly appreciated.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddhartha Sengupta.

Ethics declarations

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manikanta, V.V.D., Sengupta, S. Ni-based Catalyst Development for the Catalytic Conversion of CO2 to Substitute Natural Gas—Effect of Preparation Method. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04705-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04705-y

Keywords

Navigation