Skip to main content
Log in

Stabilizing Effect of a Template on Phosphorus-Modified ZSM-5 Zeolites

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Phosphorus modification is a prevalent technique for enhancing the hydrothermal stability and adjusting the acidity of zeolite catalysts. The relation between the structure of phosphorus-modified zeolite catalysts and their catalytic performance has been studied using ZSM-5 zeolites. However, phosphorus modification of ZSM-5 zeolites is usually performed after template removal via calcination, and the phosphorus modification of ZSM-5 zeolites without template removal has not been comprehensively studied. This study comparatively examines the phosphorus modification of ZSM-5 before and after template removal during aromatization of 1-octene. The structures of both catalyst samples (with and without template removal) were characterized via X-ray diffraction, nuclear magnetic resonance spectroscopy, infrared spectroscopy, and temperature-programmed desorption of ammonia and correlated with their catalytic performance. Results indicate that phosphorus modified ZSM-5 zeolites without template removal exhibit superior catalytic activity to those with template preremoval in the aromatization of 1-octene and hydrothermal treatment. The stabilizing effect of the template on phosphorus-modified ZSM-5 zeolites during the aromatization reaction and hydrothermal treatment is discussed based on comprehensive characterization of both the P-modified ZSM-5 catalysts. This study elucidates the influence of the template on P-modified zeolite catalysts and offers a new reference for the post-treatment of zeolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Xing M, Chen Y, Cao J, Han Y, Tao Z, Wang F, Hao K, Zhang L, Zheng W, Xiang H, Yang Y, Li Y, Wen X (2023) Are olefin aromatization reactions structure sensitive over Al pairs and single Al in H-ZSM-5 zeolite? Fuel 333:126541. https://doi.org/10.1016/j.fuel.2022.126541

    Article  CAS  Google Scholar 

  2. Ni Y, Zhu W, Liu Z (2019) H-ZSM-5-catalyzed hydroacylation involved in the coupling of methanol and formaldehyde to aromatics. ACS Catal 9:11398–11403. https://doi.org/10.1021/acscatal.9b03474

    Article  CAS  Google Scholar 

  3. Shoinkhorova T, Cordero-Lanzac T, Ramirez A, Chung SH, Dokania A, Ruiz-Martinez J, Gascon J (2021) Highly selective and stable production of aromatics via high-pressure methanol conversion. ACS Catal 11:3602–3613. https://doi.org/10.1021/acscatal.0c05133

    Article  CAS  Google Scholar 

  4. Wang H, Hou Y, Sun W, Hu Q, Xiong H, Wang T, Yan B, Qian W (2020) Insight into the effects of water on the ethene to aromatics reaction with HZSM-5. ACS Catal 10:5288–5298. https://doi.org/10.1021/acscatal.9b05552

    Article  CAS  Google Scholar 

  5. Chen Z, Ni Y, Zhi Y, Wen F, Zhou Z, Wei Y, Zhu W, Liu Z (2018) Coupling of methanol and carbon monoxide over H-ZSM-5 to form aromatics. Angew Chem Int Ed Engl 57:12549–12553. https://doi.org/10.1002/anie.201807814

    Article  CAS  PubMed  Google Scholar 

  6. Wang S, Wang PF, Qin ZF, Chen YY, Dong M, Li JF, Zhang K, Liu P, Wang JG, Fan WB (2018) Relation of catalytic performance to the aluminum siting of acidic zeolites in the conversion of methanol to olefins, viewed via a comparison between ZSM-5 and ZSM-11. ACS Catal 8:5485–5505. https://doi.org/10.1021/acscata1.8b01054

    Article  CAS  Google Scholar 

  7. Olsbye U, Svelle S, Bjorgen M, Beato P, Janssens TV, Joensen F, Bordiga S, Lillerud KP (2012) Conversion of methanol to hydrocarbons: How zeolite cavity and pore size controls product selectivity. Angew Chem Int Ed Engl 51:5810–5831. https://doi.org/10.1002/anie.201103657

    Article  CAS  PubMed  Google Scholar 

  8. Kaarsholm M, Joensen F, Nerlov J, Cenni R, Chaouki J, Patience GS (2007) Phosphorous modified ZSM-5: Deactivation and product distribution for MTO. Chem Eng Sci 62:5527–5532. https://doi.org/10.1016/j.ces.2006.12.076

    Article  CAS  Google Scholar 

  9. Zhou Z, Wang X, Li J, Gao Y, Yu R, Jiang R (2023) One-pot synthesis of phosphorus-modified ZSM-5 zeolite by solid-state method and its MTO catalytic performance. Chemistry 29:e202203095. https://doi.org/10.1002/chem.202203095

    Article  CAS  PubMed  Google Scholar 

  10. Vogt ET, Weckhuysen BM (2015) Fluid catalytic cracking: Recent developments on the grand old lady of zeolite catalysis. Chem Soc Rev 44:7342–7370. https://doi.org/10.1039/c5cs00376h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jiang W, Chen B, Shen N, Song H, Zhu Y (2010) Role and mechanism of functional components in promoters for enhancing FCC propylene yield, China Petrol. Process Petrochemi Technol. 12:13–18, CNKI:SUN:CPPP.0.2010–02–006.

  12. Xu X, Li C, Shan H (2011) Effect of phosphorus on novel bifunctional additives for enhancing the production of propylene and removal of SO2 in FCC process. J Mol Cat A Chem 340:99–107. https://doi.org/10.1016/j.molcata.2011.03.014

    Article  CAS  Google Scholar 

  13. Long H, Jin F, Xiong G, Wang X (2014) Effect of lanthanum and phosphorus on the aromatization activity of Zn/ZSM-5 in FCC gasoline upgrading. Micropor Mesopor Mater 198:29–34. https://doi.org/10.1016/j.micromeso.2014.07.016

    Article  CAS  Google Scholar 

  14. Janardhan HL, Shanbhag GV, Halgeri AB (2014) Shape-selective catalysis by phosphate modified ZSM-5: Generation of new acid sites with pore narrowing. Appl Catal A 471:12–18. https://doi.org/10.1016/j.apcata.2013.11.029

    Article  CAS  Google Scholar 

  15. Yi D, Meng X, Xu X, Liu N, Shi L (2019) Catalytic performance of modified ZSM-5 designed with selectively passivated external surface acidity by phosphorus. Ind Eng Chem Res 58:10154–10163. https://doi.org/10.1021/acs.iecr.9b00629

    Article  CAS  Google Scholar 

  16. Wu X, Anthony RG (1999) Alkylation of benzene with formaldehyde over ZSM-5. J Catal 184:294–297. https://doi.org/10.1006/jcat.1999.2426

    Article  CAS  Google Scholar 

  17. Wang C, Zhang L, Huang X, Zhu Y, Li GK, Gu Q, Chen J, Ma L, Li X, He Q, Xu J, Sun Q, Song C, Peng M, Sun J, Ma D (2019) Maximizing sinusoidal channels of HZSM-5 for high shape-selectivity to p-xylene. Nat Commun 10:4348. https://doi.org/10.1038/s41467-019-12285-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Blasco T, Corma A, Martineztriguero J (2006) Hydrothermal stabilization of ZSM-5 catalytic-cracking additives by phosphorus addition. J Catal 237:267–277. https://doi.org/10.1016/j.jcat.2005.11.011

    Article  CAS  Google Scholar 

  19. van der Bij HE, Meirer F, Kalirai S, Wang J, Weckhuysen BM (2014) Hexane cracking over steamed phosphated zeolite H-ZSM-5: Promotional effect on catalyst performance and stability. Chemistry 20:16922–16932. https://doi.org/10.1002/chem.201404924

    Article  CAS  PubMed  Google Scholar 

  20. Zhao Y, Liu J, He N, Liu C, Guo H (2019) A Comparison on the hydrothermal stability of nano-sized H-ZSM-5 zeolite modified by ammonium dihydrogen phosphate and trimethylphosphate. Catal Lett 149:2169–2179. https://doi.org/10.1007/s10562-019-02778-8

    Article  CAS  Google Scholar 

  21. Mante OD, Agblevor FA, Oyama ST, McClung R (2012) The effect of hydrothermal treatment of FCC catalysts and ZSM-5 additives in catalytic conversion of biomass. Appl Catal A 445–446:312–320. https://doi.org/10.1016/j.apcata.2012.08.039

    Article  CAS  Google Scholar 

  22. Louwen JN, van Eijck L, Vogt C, Vogt ETC (2020) Understanding the activation of ZSM-5 by phosphorus: Localizing phosphate groups in the pores of phosphate-stabilized ZSM-5. Chem Mater 32:9390–9403. https://doi.org/10.1021/acs.chemmater.0c03411

    Article  CAS  Google Scholar 

  23. van der Bij HE, Weckhuysen BM (2015) Phosphorus promotion and poisoning in zeolite-based materials: Synthesis, characterisation and catalysis. Chem Soc Rev 44:7406–7428. https://doi.org/10.1039/c5cs00109a

    Article  PubMed  PubMed Central  Google Scholar 

  24. Moliner M, Rey F, Corma A (2013) Towards the rational design of efficient organic structure-directing agents for zeolite synthesis. Angew Chem Int Ed Engl 52:13880–13889. https://doi.org/10.1002/anie.201304713

    Article  CAS  PubMed  Google Scholar 

  25. Burkett SL, Davis ME (1995) Mechanisms of structure direction in the synthesis of pure-silica zeolites. 1. Synthesis of TPA/Si-ZSM-5. Chem Mater 7:920–928. https://doi.org/10.1021/cm00053a017

    Article  CAS  Google Scholar 

  26. Lok BM, Cannan TR, Messina CA (1983) The role of organic molecules in molecular sieve synthesis. Zeolites 3:282–291. https://doi.org/10.1016/0144-2449(83)90169-0

    Article  CAS  Google Scholar 

  27. Jensen Z, Kwon S, Schwalbe-Koda D, Paris C, Gomez-Bombarelli R, Roman-Leshkov Y, Corma A, Moliner M, Olivetti EA (2021) Discovering Relationships between OSDAs and zeolites through data mining and generative neural networks. ACS Cent Sci 7:858–867. https://doi.org/10.1021/acscentsci.1c00024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vomscheid R, Briend M, Peltre MJ, Man PP, Barthomeuf D (1994) The role of the template in directing the Si distribution in SAPO zeolites. J Phys Chem 98:9614–9618. https://doi.org/10.1021/j100089a041

    Article  CAS  Google Scholar 

  29. Fouad OA, Mohamed RM, Hassan MS, Ibrahim IA (2006) Effect of template type and template/silica mole ratio on the crystallinity of synthesized nanosized ZSM-5. Cat Today 116:82–87. https://doi.org/10.1016/j.cattod.2006.03.004

    Article  CAS  Google Scholar 

  30. Gies H, Marker B (1992) The structure-controlling role of organic templates for the synthesis of porosils in the systems SiO2/template/H2O. Zeolites 12:42–49. https://doi.org/10.1016/0144-2449(92)90008-d

    Article  CAS  Google Scholar 

  31. Caeiro G, Magnoux P, Lopes JM, Ribeiro FR, Menezes SMC, Costa AF, Cerqueira HS (2006) Stabilization effect of phosphorus on steamed H-MFI zeolites. Appl Catal A 314:160–171. https://doi.org/10.1016/j.apcata.2006.08.016

    Article  CAS  Google Scholar 

  32. Damodaran K, Wiench JW, Cabral de Menezes SM, Lam YL, Trebosc J, Amoureux JP, Pruski M (2006) Modification of H-ZSM-5 zeolites with phosphorus. 2. Interaction between phosphorus and aluminum studied by solid-state NMR spectroscopy. Micropor Mesopor Mater 95:296–305. https://doi.org/10.1016/j.micromeso.2006.05.034

    Article  CAS  Google Scholar 

  33. Ramesh K, Jie C, Han YF, Borgna A (2010) Synthesis, characterization, and catalytic activity of phosphorus Modified H-ZSM-5 catalysts in selective ethanol dehydration. Ind Eng Chem Res 49:4080–4090. https://doi.org/10.1021/ie901666f

    Article  CAS  Google Scholar 

  34. Göhlich M, Reschetilowski W, Paasch S (2011) Spectroscopic study of phosphorus modified H-ZSM-5. Micropor Mesopor Mater 142:178–183. https://doi.org/10.1016/j.micromeso.2010.11.033

    Article  CAS  Google Scholar 

  35. Lischke G (1991) Spectroscopic and physicochemical characterization of P-modified H-ZSM-5. J Catal 132:229–243. https://doi.org/10.1016/0021-9517(91)90259-7

    Article  CAS  Google Scholar 

  36. Emeis CA (1993) Determination of integrated molar Extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. J Catal 141:347–354. https://doi.org/10.1006/jcat.1993.1145

    Article  CAS  Google Scholar 

  37. Jiao Y, Forster L, Xu S, Chen H, Han J, Liu X, Zhou Y, Liu J, Zhang J, Yu J, D’Agostino C, Fan X (2020) Creation of Al-enriched mesoporous ZSM-5 nanoboxes with high catalytic activity: Converting tetrahedral extra-framework Al into framework sites by post treatment. Angew Chem Int Ed Engl 59:19478–19486. https://doi.org/10.1002/anie.202002416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu J, Zhang C, Shen Z, Hua W, Tang Y, Shen W, Yue Y, Xu H (2009) Methanol to propylene: Effect of phosphorus on a high silica HZSM-5 catalyst. Catal Commun 10:1506–1509. https://doi.org/10.1016/j.catcom.2009.04.004

    Article  CAS  Google Scholar 

  39. van der Bij HE, Aramburo LR, Arstad B, Dynes JJ, Wang J, Weckhuysen BM (2014) Phosphatation of zeolite H-ZSM-5: A combined microscopy and spectroscopy study. ChemPhysChem 15:283–292. https://doi.org/10.1002/cphc.201300910

    Article  CAS  PubMed  Google Scholar 

  40. Danisi RM, Schmidt JE, LuciniPaioni A, Houben K, Poplawsky JD, Baldus M, Weckhuysen BM, Vogt ETC (2018) Revealing long- and short-range structural modifications within phosphorus-treated HZSM-5 zeolites by atom probe tomography, nuclear magnetic resonance and powder X-ray diffraction. Phys Chem Chem Phys 20:27766–27777. https://doi.org/10.1039/c8cp03828g

    Article  CAS  PubMed  Google Scholar 

  41. Liu H, Wang H, Xing AH, Cheng JH (2019) Effect of Al distribution in MFI framework channels on the catalytic performance of ethane and ethylene aromatization. J Phys Chem C 123:15637–15647. https://doi.org/10.1021/acs.jpcc.9b03507

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from the National Key R&D Program of China (No. 2020YFB0606404), the Ministry of Science and Technology of China (Grant No. 2022YFA1604104), the Ordos Science and Technology Cooperation Key Special Project 2021EEDSCXQDFZ008 and funding support from Synfuels China, Co. Ltd. Wentao Zheng appreciates the support from NPL, CAEP (No. 2019BB08).

We greatly acknowledge Ms. Guoyan Zhao, Ms. Caixia Hu, and Ms. Yiling Bai at Synfuels China Co., Ltd. for assistance in performing IR, NMR, and XRD analysis, respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun Hao or Wentao Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1459 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, J., Hou, R., Wang, F. et al. Stabilizing Effect of a Template on Phosphorus-Modified ZSM-5 Zeolites. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04704-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04704-z

Keywords

Navigation