Skip to main content
Log in

Acid Treatment on Bentonite Catalysts for Alkylation of Diphenylamine

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Dialkylated diphenylamine, renowned for its exceptional thermal stability and antioxidant activity, are extensively used as antioxidants. Raw bentonite after acid-treatment was carried out and the catalytic performance of various solid acid catalysts was tested, and acid-treated clay exhibited the best. In addition, the relationship between catalytic activity and washing times has been explored. The results revealed that after activating by sulfuric acid and several water-treatment times, the catalytic activity and mono-selectivity of raw bentonite significantly improved. The acid-treated bentonite catalysts were investigated by BET, XRF, XRD, SEM, Raman and FT-IR, and results indicated that the Si/Al ratio and the specific surface area increased and the basal spacing was expanded after acid and water treatment. Finally, the deactivation (reusability and regeneration) of catalysts was studied, after characterized the fresh and used catalysts, the results indicated that the deactivation of catalysts was due to reduction of microporous structure and surface acidity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Simard F (2008) Method to prepare nonylated diphenylamine using recycle and sequential temperatures. U.S.Patent 8828916

  2. Chitnis SR, Sharma MM (1996) Alkylation of Diphenylamine with α-Methylstyrene and Diisobutylene Using Acid-Treated Clay Catalysts. J Catal 160:84–94. https://doi.org/10.1006/jcat.1996.0126

    Article  CAS  Google Scholar 

  3. Andruskova V, Uhlar J, Lehocky P, Horak J (2005) Antioxidant compositions of octylated diphenylamines and method of their preparation. U.S.Patent 7928265

  4. Kostrab G, Lovič M, Janotka I, Bajus M, Mravec D (2008) tert-Butylation of diphenylamine over zeolite catalysts: Part 1: Catalyst screening and optimization of reaction conditions. Appl Catal A Gen 335:74–81. https://doi.org/10.1016/j.apcata.2007.11.019

    Article  CAS  Google Scholar 

  5. Liu Y, Su Kim S, Pinnavaia TJ (2004) Mesostructured aluminosilicate alkylation catalysts for the production of aromatic amine antioxidants. J Catal 225:381–387. https://doi.org/10.1016/j.jcat.2004.04.009

    Article  CAS  Google Scholar 

  6. Derouane EG, Crehan G, Dillon CJ, Bethell D, He H, Derouane-Abd Hamid SB (2000) Zeolite Catalysts as Solid Solvents in Fine Chemicals Synthesis: 2. Competitive Adsorption of the Reactants and Products in the Friedel-Crafts Acetylations of Anisole and Toluene. J Catal 194:410–423. https://doi.org/10.1006/jcat.2000.2933

    Article  CAS  Google Scholar 

  7. Sklenár M, Danielik V, Hudec P (2017) Discontinuous alkylation of diphenylamine with nonene for maximum catalyst utilization. Chem Pap 71:1453–1461. https://doi.org/10.1007/s11696-017-0139-2

    Article  CAS  Google Scholar 

  8. Kostrab G, Lovic M, Turan A, Hudec P, Kaszonyi A, Bajus M, Uhlar J, Lehocky P, Mravec D (2012) tert-Butylation of diphenylamine over zeolite catalysts comparison of different alkylation agents and catalysts. Catal Commun 18:176–181. https://doi.org/10.1016/j.catcom.2011.12.005

    Article  CAS  Google Scholar 

  9. Bayha CE, Madden TR (1973) Dialkylated diarylamines and a method for producing same. U.S.Patent 3714258

  10. Zhang L, Bo X, Yao H, Mao M, Wan L, Xin Z (2020) Zinc-Catalyzed Alkylation of Aromatic Amines in Continuous Flow. Org Process Res Dev 24:2078–2084. https://doi.org/10.1021/acs.oprd.0c00138

    Article  CAS  Google Scholar 

  11. Perego C, Ingallina P (2002) Recent advances in the industrial alkylation of aromatics: new catalysts and new processes. Catal Today 73:3–22. https://doi.org/10.1016/S0920-5861(01)00511-9

    Article  CAS  Google Scholar 

  12. Tanabe K, Hölderich WF (1999) Industrial application of solid acid–base catalysts. Appl Catal A Gen 181:399–434. https://doi.org/10.1016/S0926-860X(98)00397-4

    Article  CAS  Google Scholar 

  13. Wang M, Kuai L, Shi L, Meng X, Liu N (2022) Catalytic performance and industrial test of HY zeolite for alkylation of naphthalene and α-tetradecene. New J Chem 46:2290–2299. https://doi.org/10.1039/D1NJ04876G

    Article  CAS  Google Scholar 

  14. Corma A, Garcia H (1997) Organic reactions catalyzed over solid acids. Catal Today 38:257–308. https://doi.org/10.1016/S0920-5861(97)81500-1

    Article  CAS  Google Scholar 

  15. Corma A (1995) Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions. Chem Rev 95:559–614. https://doi.org/10.1021/cr00035a006

    Article  CAS  Google Scholar 

  16. Li J, Jiang M, Wu H, Li Y (2009) Addition of Modified Bentonites in Polymer Gel Formulation of 2,4-D for Its Controlled Release in Water and Soil. J Agric Food Chem 57:2868–2874. https://doi.org/10.1021/jf803744w

    Article  CAS  PubMed  Google Scholar 

  17. Peng Q, Kong D, Shi L, Wang X, Meng X, Liu N (2020) Preparation of a novel bentonite intercalation composite by changing the chemical state of aluminum. J Chin Chem Soc 67:1009–1015. https://doi.org/10.1002/jccs.201900353

    Article  CAS  Google Scholar 

  18. Panda AK, Mishra BG, Mishra DK, Singh RK (2010) Effect of sulphuric acid treatment on the physico-chemical characteristics of kaolin clay. Colloids Surf A Physicochem Eng Aspects 363:98–104. https://doi.org/10.1016/j.colsurfa.2010.04.022

    Article  CAS  Google Scholar 

  19. Nagendrappa G, Chowreddy RR (2021) Organic Reactions Using Clay and Clay-Supported Catalysts: A Survey of Recent Literature. Catal Surv Asia 25:231–278. https://doi.org/10.1007/s10563-021-09333-9

    Article  CAS  Google Scholar 

  20. Yadav GD, Kamble SB (2009) Selectivity engineering in isopropylation of mesitylene with isopropyl alcohol over cesium substituted heteropolyacid supported on K-10 clay. Clean Technol Environ Policy 11:447–457. https://doi.org/10.1007/s10098-009-0203-x

    Article  CAS  Google Scholar 

  21. Lenarda M, Storaro L, Talon A, Moretti E, Riello P (2007) Solid acid catalysts from clays: Preparation of mesoporous catalysts by chemical activation of metakaolin under acid conditions. J Colloid Interface Sci 311:537–543. https://doi.org/10.1016/j.jcis.2007.03.015

    Article  CAS  PubMed  Google Scholar 

  22. Belver C, Bañares Muñoz MA, Vicente MA (2002) Chemical Activation of a Kaolinite under Acid and Alkaline Conditions. Chem Mater 14:2033–2043. https://doi.org/10.1021/cm0111736

    Article  CAS  Google Scholar 

  23. Wang W, Wang X, Song C, Wei X, Ding J, Xiao J (2013) Sulfuric Acid Modified Bentonite as the Support of Tetraethylenepentamine for CO2 Capture. Energ Fuel 27:1538–1546. https://doi.org/10.1021/ef3021816

    Article  CAS  Google Scholar 

  24. Faghihian H, Mohammadi MH (2014) Acid activation effect on the catalytic performance of Al-pillared bentonite in alkylation of benzene with olefins. Appl Clay Sci 93–94:1–7. https://doi.org/10.1016/j.clay.2014.02.026

    Article  CAS  Google Scholar 

  25. Kiani F, Mazloom G, Ghani M, Banisharif F (2022) Acid-modified mineral bentonite as catalyst for efficient furfural formation from glucose. Biomas Convers Bior. https://doi.org/10.1007/s13399-022-03243-0

    Article  Google Scholar 

  26. Elfadly AM, Zeid IF, Yehia FZ, Abouelela MM, Rabie AM (2017) Production of aromatic hydrocarbons from catalytic pyrolysis of lignin over acid-activated bentonite clay. Fuel Process Technol 163:1–7. https://doi.org/10.1016/j.fuproc.2017.03.033

    Article  CAS  Google Scholar 

  27. Lai JT, Filla DS (1998) Liquid alkylated diphenylamine antioxidant. U.S.Patent 5750787

  28. Wallis PJ, Gates WP, Patti AF, Scott JL, Teoh E (2007) Assessing and improving the catalytic activity of K-10 montmorillonite. Green Chem 9:980–986. https://doi.org/10.1039/b701504f

    Article  CAS  Google Scholar 

  29. Hart MP, Brown DR (2004) Surface acidities and catalytic activities of acid-activated clays. J Mol Catal A: Chem 212:315–321. https://doi.org/10.1016/j.molcata.2003.11.013

    Article  CAS  Google Scholar 

  30. Sing K (2001) The use of nitrogen adsorption for the characterisation of porous materials. Colloids Surf A Physicochem Eng Aspects 187–188:3–9. https://doi.org/10.1016/S0927-7757(01)00612-4

    Article  Google Scholar 

  31. Madejová J (2003) FTIR techniques in clay mineral studies. Vib Spectrosc 31:1–10. https://doi.org/10.1016/s0924-2031(02)00065-6

    Article  Google Scholar 

  32. Bhattacharyya S, Behera PS (2017) Synthesis and characterization of nano-sized α-alumina powder from kaolin by acid leaching process. Appl Clay Sci 146:286–290. https://doi.org/10.1016/j.clay.2017.06.017

    Article  CAS  Google Scholar 

  33. Torres-Luna JA, Carriazo JG (2019) Porous aluminosilicic solids obtained by thermal-acid modification of a commercial kaolinite-type natural clay. Solid State Sci 88:29–35. https://doi.org/10.1016/j.solidstatesciences.2018.12.006

    Article  CAS  Google Scholar 

  34. Tyagi B, Chudasama CD, Jasra RV (2006) Determination of structural modification in acid activated montmorillonite clay by FT-IR spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 64:273–278. https://doi.org/10.1016/j.saa.2005.07.018

    Article  CAS  PubMed  Google Scholar 

  35. Weng S, Xu Y (2016) Fuliye bianhuan hongwai guangpu fenxi [Analysis of fourier transform infrared spectroscopy]. Beijing (in Chinese)

  36. Gandhi D, Bandyopadhyay R, Soni B (2022) Naturally occurring bentonite clay: Structural augmentation, characterization and application as catalyst. Mater Today Proc 57:194–201. https://doi.org/10.1016/j.matpr.2022.02.346

    Article  CAS  Google Scholar 

  37. Kumar A, Lingfa P (2020) Sodium bentonite and kaolin clays: Comparative study on their FT-IR, XRF, and XRD. Mater Today Proc 22:737–742. https://doi.org/10.1016/j.matpr.2019.10.037

    Article  CAS  Google Scholar 

  38. Farmer VC (1974) The infrared spectra of minerals. Monograph Mineralogical Society 4:331–363

    Google Scholar 

  39. Madhurambal G, Mariappan M, Hariharan S, Ramasamy P, Mojumdar SC (2013) Thermal and FTIR spectral studies of various proportions of zinc magnesium ammonium sulfate. J Therm Anal Calorim 112:1031–1037. https://doi.org/10.1007/s10973-013-3059-6

    Article  CAS  Google Scholar 

  40. Theiss FL, López A, Scholz R, Frost RL (2015) A SEM, EDS and vibrational spectroscopic study of the clay mineral fraipontite. Spectrochim Acta A Mol Biomol Spectrosc 147:230–234. https://doi.org/10.1016/j.saa.2015.03.088

    Article  CAS  PubMed  Google Scholar 

  41. Demaret L, Lerman HN, Mchugh M, Hutchinson IB, Fagel N, Eppe G, Malherbe C (2023) Raman analyses of Al and Fe/Mg-rich clays: Challenges and possibilities for planetary missions. J Raman Spectrosc 54:823–835. https://doi.org/10.1002/jrs.6568

    Article  CAS  Google Scholar 

  42. Larre C, Morizet Y, Guillot-Deudon C, Baron F, Mangold N (2019) Quantitative Raman calibration of sulfate-bearing polymineralic mixtures: a S quantification in sedimentary rocks on Mars. Mineral Mag 83:57–69. https://doi.org/10.1180/mgm.2018.147

    Article  CAS  Google Scholar 

  43. Ritz M, Vaculíková L, Kupková J, Plevová E, Bartoňová L (2016) Different level of fluorescence in Raman spectra of montmorillonites. Vib Spectrosc 84:7–15. https://doi.org/10.1016/j.vibspec.2016.02.007

    Article  CAS  Google Scholar 

  44. Flessner U, Jones DJ, Rozière J, Zajac J, Storaro L, Lenarda M, Pavan M, Jiménez-López A, Rodrı́Guez-Castellón E, Trombetta M, Busca G (2001) A study of the surface acidity of acid-treated montmorillonite clay catalysts. J Mol Catal A: Chem 168:247–256. https://doi.org/10.1016/S1381-1169(00)00540-9

    Article  CAS  Google Scholar 

  45. Liu N, Xie H, Cao H, Shi L, Meng X (2019) Multi-technique characterization of recycled acetylene carbonylation catalyst CuY: deactivation and coke analysis. Fuel 242:617–623. https://doi.org/10.1016/j.fuel.2018.12.092

    Article  CAS  Google Scholar 

  46. Liu N, Ma Z, Wang S, Shi L, Hu X, Meng X (2020) Palladium-doped sulfated zirconia: Deactivation behavior in isomerization of n-hexane. Fuel 262:116566. https://doi.org/10.1016/j.fuel.2019.116566

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naiwang Liu.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Y., Wang, S., Meng, X. et al. Acid Treatment on Bentonite Catalysts for Alkylation of Diphenylamine. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04697-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04697-9

Keywords

Navigation