Skip to main content
Log in

Aerobic Acetalization of Ethylene Glycol with Acetone by Newly Designed Highly Efficient Soft NiO@B@GCN Nanocubes Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The ultimate objective is to create strategies for glycol acetalization that are both economically and ecologically benign. The product cyclic dioxolane formed by acetalization of glycol shows excellent solvent properties as it is non-carcinogenic and causes no ozone related problems. It is used as a component of solvent in batteries and also finds application in the fragrance, flavour, pharmaceutical, polymers and textile industries. Herein we report a highly promising and environmentally benign process for converting glycol into 2,2 dimethyl 1,3 dioxolane via acetalization through NiO@B@GCN nanocubes catalys. Comprehensive analysis shows that the high catalytic performance of NiO@B@GCN nanocubes is the result of the cooperation of band gap engineering and efficient charge transfer capabilities. This work demonstrates the use of a synergistic strategy to effectively synthesize soft NiO@B@GCN nanocubes as a promising catalyst that exhibit excellent product yield.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ilgen O, Yerlikaya S, Akyurek FO (2017) Synthesis of solketal from glycerol and acetone over amberlyst-46 to produce an oxygenated fuel additive. Period Polytech Chem Eng 61:144–148

    CAS  Google Scholar 

  2. Chopade SP, Sharma MM (1997) Acetalization of ethylene glycol with formaldehyde using cation-exchange resins as catalysts: Batch versus reactive distillation. React Funct Polym 34:37–45

    Article  CAS  Google Scholar 

  3. Yadav GD, Katole SO (2014) Selective Acetalization of ethylene glycol with methyl 2-napthyl ketone over solid acids: Efficacy of acidic clay supported Cs2.5H0.5PW12O40. Catal Today 237:125–135

    Article  CAS  Google Scholar 

  4. Han X, Yan W, Chen K et al (2014) Heteropolyacid-based ionic liquids as effective catalysts for the synthesis of benzaldehyde glycol acetal. Appl Catal A Gen 485:149–156

    Article  CAS  Google Scholar 

  5. Gu Y, Azzouzi A, Pouilloux Y et al (2008) Heterogeneously catalyzed etherification of glycerol: new pathways for transformation of glycerol to more valuable chemicals. Green Chem 10:164–167

    Article  CAS  Google Scholar 

  6. Melero JA, Vicente G, Morales G et al (2010) Oxygenated compounds derived from glycerol for biodiesel formulation: Influence on EN 14214 quality parameters. Fuel 89:2011–2018

    Article  CAS  Google Scholar 

  7. Abdullah Khan M, Teixeira IF, Li MMJ et al (2016) Graphitic carbon nitride catalysed photoacetalization of aldehydes/ketones under ambient conditions. Chem Commun 52:2772–2775

    Article  CAS  Google Scholar 

  8. Jermy BR, Pandurangan A (2005) Catalytic application of Al-MCM-41 in the esterification of acetic acid with various alcohols. Appl Catal A Gen 288:25–33

    Article  CAS  Google Scholar 

  9. Mallick S, Parida KM (2007) Studies on heteropoly acid supported zirconia II. Liquid phase bromination of phenol and various organic substrates. Catal Commun 8:889–893

    Article  CAS  Google Scholar 

  10. Wang S, Guin JA (2000) Silica-supported sulfated zirconia: a new effective acid solid for etherification. Chem Commun 24:2499–2500

    Article  Google Scholar 

  11. Song SH, Park DR, Woo SY et al (2010) Direct preparation of dichloropropanol from glycerol and hydrochloric acid gas using heteropolyacid (HPA) catalyst by heterogeneous gas phase reaction. J Ind Eng Chem 16:662–665

    Article  CAS  Google Scholar 

  12. Cho H-J, Kwon H-M, Tharun J, Park D-W (2010) Synthesis of glycerol carbonate from ethylene carbonate and glycerol using immobilized ionic liquid catalysts. J Ind Eng Chem 16:679–683

    Article  CAS  Google Scholar 

  13. Behr A, Eilting J, Irawadi K et al (2008) Improved utilisation of renewable resources: New important derivatives of glycerol. Green Chem 10:13–30

    Article  CAS  Google Scholar 

  14. Miyazawa T, Kusunoki Y, Kunimori K, Tomishige K (2006) Glycerol conversion in the aqueous solution under hydrogen over Ru/C+ an ion-exchange resin and its reaction mechanism. J Catal 240:213–221

    Article  CAS  Google Scholar 

  15. Tsukuda E, Sato S, Takahashi R, Sodesawa T (2007) Production of acrolein from glycerol over silica-supported heteropoly acids. Catal Commun 8:1349–1353

    Article  CAS  Google Scholar 

  16. Zhou C-HC, Beltramini JN, Fan Y-X, Lu GQM (2008) Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem Soc Rev 37:527–549

    Article  PubMed  Google Scholar 

  17. He L, Chen L, Nie Y, et al (2024) A practical approach for enhanced biodiesel production using organic modified montmorillonites as efficient heterogeneous hybrid catalysts. Green Chem

  18. De Lima RB, Paganin V, Iwasita T, Vielstich W (2003) On the electrocatalysis of ethylene glycol oxidation. Electrochim Acta 49:85–91

    Article  Google Scholar 

  19. Lele BS, Kulkarni MG (1998) Single step room temperature oxidation of poly (ethylene glycol) to poly (oxyethylene)-dicarboxylic acid. J Appl Polym Sci 70:883–890

    Article  CAS  Google Scholar 

  20. Vicente G, Melero JA, Morales G et al (2010) Acetalisation of bio-glycerol with acetone to produce solketal over sulfonic mesostructured silicas. Green Chem 12:899–907

    Article  CAS  Google Scholar 

  21. Garcia E, Laca M, Pérez E et al (2008) New class of acetal derived from glycerin as a biodiesel fuel component. Energy Fuels 22:4274–4280

    Article  CAS  Google Scholar 

  22. Silva PHR, Gonçalves VLC, Mota CJA (2010) Glycerol acetals as anti-freezing additives for biodiesel. Bioresour Technol 101:6225–6229

    Article  CAS  PubMed  Google Scholar 

  23. Olajire AA, Mohammed AA (2019) Green synthesis of nickel oxide nanoparticles and studies of their photocatalytic activity in degradation of polyethylene films. Adv Powder Technol 31:211–218

    Article  Google Scholar 

  24. Jaysiva G, Manavalan S, Chen SM et al (2020) MoN Nanorod/Sulfur-Doped Graphitic Carbon Nitride for Electrochemical Determination of Chloramphenicol. ACS Sustain Chem Eng 8:11088–11098

    Article  CAS  Google Scholar 

  25. Poly SS, Jamil MAR, Touchy AS et al (2019) Acetalization of glycerol with ketones and aldehydes catalyzed by high silica Hβ zeolite. Mol Catal 479:110608

    Article  Google Scholar 

  26. Ozorio LP, Pianzolli R, Mota MBS, Mota CJA (2012) Reactivity of glycerol/acetone ketal (solketal) and glycerol/formaldehyde acetals toward acid-catalyzed hydrolysis. J Braz Chem Soc 23:931–937

    Article  CAS  Google Scholar 

  27. Thaweesak S, Wang S, Lyu M et al (2017) Boron-doped graphitic carbon nitride nanosheets for enhanced visible light photocatalytic water splitting. Dalt Trans 46:10714–10720

    Article  CAS  Google Scholar 

  28. Liu J, Zhang T, Wang Z et al (2011) Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J Mater Chem 21:14398–14401

    Article  CAS  Google Scholar 

  29. Niu P, Zhang L, Liu G, Cheng H (2012) Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv Funct Mater 22:4763–4770

    Article  CAS  Google Scholar 

  30. Lu X, Xu K, Chen P et al (2014) Facile one step method realizing scalable production of gC 3 N 4 nanosheets and study of their photocatalytic H 2 evolution activity. J Mater Chem A 2:18924–18928

    Article  CAS  Google Scholar 

  31. Ran J, Ma TY, Gao G et al (2015) Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production. Energy Environ Sci 8:3708–3717

    Article  CAS  Google Scholar 

  32. She X, Wu J, Zhong J et al (2016) Oxygenated monolayer carbon nitride for excellent photocatalytic hydrogen evolution and external quantum efficiency. Nano Energy 27:138–146

    Article  CAS  Google Scholar 

  33. Wang SQ, Zhang XY, Dao XY et al (2020) Cu2O@Cu@UiO-66-NH2ternary nanocubes for photocatalytic CO2reduction. ACS Appl Nano Mater 3:10437–10445

    Article  CAS  Google Scholar 

  34. Kocijan A, Donik Č, Jenko M (2007) Electrochemical and XPS studies of the passive film formed on stainless steels in borate buffer and chloride solutions. Corros Sci 49:2083–2098

    Article  CAS  Google Scholar 

  35. Bansod AV, Patil AP, Verma J, Shukla S (2019) Microstructure, mechanical and electrochemical evaluation of dissimilar low Ni SS and 304 SS using different filler materials. Mater Res 22:1–14

    Article  Google Scholar 

  36. Hashimoto K, Asami K, Kawashima A et al (2007) The role of corrosion-resistant alloying elements in passivity. Corros Sci 49:42–52

    Article  CAS  Google Scholar 

  37. Kumar K, Yadav RK, Verma RK et al (2023) Unleashing the solar revolution: harnessing the power of an ultra-strong tensile strength PGTPP nanocomposite photocatalyst for artificial photosynthesis. Catal Sci Technol 13:5679–5688

    Article  CAS  Google Scholar 

  38. Srivastava S, Yadav RK, Singh S et al (2023) Synthesis of highly efficient nitrogen enrich graphene eosin-Y coupled photocatalyst that uses solar energy in trifluoromethylation of benzaldehydes. J Chem Sci 135:109

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We express gratitude to the Madan Mohan Malaviya University of Technology, Gorakhpur for financial assistance and CatLab of Indian Institute of Science, Bangalore for characterization and their complete investigation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rajesh K. Yadav or Jin-OoK Baeg.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubey, N., Yadav, R.K., Mishra, S. et al. Aerobic Acetalization of Ethylene Glycol with Acetone by Newly Designed Highly Efficient Soft NiO@B@GCN Nanocubes Catalyst. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04694-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04694-y

Keywords

Navigation