Skip to main content
Log in

Selective Oxidation of Alkyl Hydrocarbon with Molecular Oxygen Catalyzed by Surface-Amine-Modified Cobalt-Silicon Mixed Nano Oxides

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

With a one-step reverse-phase microemulsion method, surface-amine-modified cobalt-silicon mixed oxide (BA-Co-SiO2) was successfully prepared, which was characterized by SEM, FTIR, UV-Vis DRS, XPS, TG-DTA, N2 adsorption-desorption, and hydrophobicity/lipophilicity measurement, etc. In-situ introduction of organic amine on the surface caused three positive effects on the improvement of the catalytic oxidation ability: the first one is to generate a higher specific surface area; the second one is to modify the surface of the catalyst to be more hydrophobic and lipophilic; and the third one is to facilitate the generation of Co(III) with a higher valence state that owns a stronger oxidation ability. Under the solvent-free conditions and with molecular oxygen as the oxidant, BA-Co-SiO2 showed a much higher catalytic activity for the selective oxidation of ethylbenzene compared with Co-SiO2 without amine. The reported results supplied a good reference for designing the efficient catalyst through the modification of the surface property and catalyst’s structure with a simple in-situ method.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Arndtsen BA, Bergman RG, Mobley TA, Peterson TH (1995) Selective intermolecular carbon-hydrogen bond activation by synthetic metal complexes in homogeneous solution. Acc Chem Res 28:154–162. https://doi.org/10.1021/ar00051a009

    Article  CAS  Google Scholar 

  2. Ritleng V, Sirlin C, Pfeffer M (2002) Ru-, Rh-, and Pd-catalyzed C-C bond formation involving C-H activation and addition on unsaturated substrates: reactions and mechanistic aspects. Chem Rev 102:1731–1770. https://doi.org/10.1021/cr0104330

    Article  CAS  PubMed  Google Scholar 

  3. Punniyamurthy T, Velusamy S, Iqbal J (2005) Recent advances in transition metal catalyzed oxidation of organic substrates with molecular oxygen. Chem Rev 105:2329–2364. https://doi.org/10.1021/cr050523v

    Article  CAS  PubMed  Google Scholar 

  4. Jiang Y, Zhang C, Li Y, Jiang P, Jiang J, Leng Y (2018) Solvent-free aerobic selective oxidation of hydrocarbons catalyzed by porous graphitic carbon encapsulated cobalt composites. New J Chem 42:16829–16835. https://doi.org/10.1039/C8NJ03492C

    Article  CAS  Google Scholar 

  5. Gaster E, Kozuch S, Pappo D (2017) Selective aerobic oxidation of methylarenes to benzaldehydes catalyzed by N-hydroxyphthalimide and cobalt (II) acetate in hexafluoropropan-2-ol. Angew Chem Int Ed 56:5912–5915. https://doi.org/10.1002/anie.201702511

    Article  CAS  Google Scholar 

  6. Xu S, Shi G, Feng Y, Chen C, Ji L (2020) Highly efficient transformation of ethylbenzene into acetophenone catalyzed by NHPI/Co (II) using molecular oxygen in hexafluoropropan-2-ol. Mol Catal 498:111244. https://doi.org/10.1016/j.mcat.2020.111244

    Article  CAS  Google Scholar 

  7. Guo C-C, Chu M-F, Liu Q, Liu Y, Guo D-C, Liu X-Q (2003) Effective catalysis of simple metalloporphyrins for cyclohexane oxidation with air in the absence of additives and solvents. Appl Catal A-Gen 246:303–309. https://doi.org/10.1016/S0926-860X(03)00061-9

    Article  CAS  Google Scholar 

  8. Fujitani K, Manami H, Nakazawa M, Oida T, Kawase T (2009) Preparation of polycarboxylic acids by oxidative cleavage with Oxygen/Co-Mn-Br system. J Oleo Sci 58:629–637. https://doi.org/10.5650/jos.58.629

    Article  CAS  PubMed  Google Scholar 

  9. Zhao G, Liu H, Ye J (2018) Constructing and controlling of highly dispersed metallic sites for catalysis. Nano Today 19:108–125. https://doi.org/10.1016/j.nantod.2018.02.013

    Article  CAS  Google Scholar 

  10. Su Y, Li Y, Chen Z, Huang J, Wang H, Yu H, Cao Y, Peng F (2021) New understanding of selective aerobic oxidation of ethylbenzene catalyzed by nitrogen-doped carbon nanotubes. ChemCatChem 13:646–655. https://doi.org/10.1002/cctc.202001503

    Article  CAS  Google Scholar 

  11. Rao BG, Sudarsanam P, Rao TV, Amin MH, Bhargava SK, Reddy BM (2020) Highly dispersed MnOx nanoparticles on shape-controlled SiO2 spheres for ecofriendly selective allylic oxidation of cyclohexene. Catal Lett 150:3023–3035. https://doi.org/10.1007/s10562-020-03205-z

    Article  CAS  Google Scholar 

  12. Yi C, Huo J, Liu Z (2023) Co single atoms and CoO clusters over nitrogen-doped hollow carbon spheres for synergistic oxidation of aromatic alkanes. Chem Eng J 467:143541. https://doi.org/10.1016/j.cej.2023.143541

    Article  CAS  Google Scholar 

  13. Ozols K, Onodera S, Woźniak Ł, Cramer N (2021) Cobalt (III)-Catalyzed enantioselective intermolecular carboamination by C-H functionalization. Angew Chem Int Ed 60:655–659. https://doi.org/10.1002/anie.202011140

    Article  CAS  Google Scholar 

  14. Das D, Pattanayak S, Singh KK, Garai B, Sen Gupta S (2016) Electrocatalytic water oxidation by a molecular cobalt complex through a high valent cobalt oxo intermediate. Chem. Commun 52:11787–1790. https://doi.org/10.1039/C6CC05773J

  15. Mukherjee A, Milstein D (2018) Homogeneous catalysis by cobalt and manganese pincer complexes. ACS Catal 8:11435–11469. https://doi.org/10.1021/acscatal.8b02869

    Article  CAS  Google Scholar 

  16. Jie S, Lin X, Chen Q, Zhu R, Zhang L, Zhang B, Liu Z (2018) Montmorillonite-assisted synthesis of cobalt-nitrogen-doped carbon nanosheets for high-performance selective oxidation of alkyl aromatics. Appl Surf Sci 456:951–958. https://doi.org/10.1016/j.apsusc.2018.06.109

    Article  CAS  Google Scholar 

  17. Xu W-F, Chen W-J, Li D-C, Cheng B-H, Jiang H (2019) Highly dispersed manganese based Mn/N-C/Al2O3 catalyst for selective oxidation of the C-H bond of ethylbenzene. Ind Eng Chem Res 58:3969–3977. https://doi.org/10.1021/acs.iecr.8b05328

    Article  CAS  Google Scholar 

  18. Chen Y, Zhao S, Liu Z (2015) Influence of the synergistic effect between Co-N-C and ceria on the catalytic performance for selective oxidation of ethylbenzene. Phys Chem Chem Phys 17:14012–14020. https://doi.org/10.1039/C5CP01829C

    Article  CAS  PubMed  Google Scholar 

  19. Ren J, Zhou Y, Miao H (2023) Solvent-free oxidation of benzyl C-H to ketone with Co-Ni layered double hydroxide as the catalyst and O2 as the sole oxidant. Dalton Trans 52:6398–6406. https://doi.org/10.1039/D3DT00851G

    Article  CAS  PubMed  Google Scholar 

  20. Budnikova Y, Bochkova O, Khrizanforov M, Nizameev I, Kholin K, Gryaznova T, Laskin A, Dudkina Y, Strekalova S, Fedorenko S, Kononov A, Mustafina A (2019) Selective C (sp2)-H amination catalyzed by high-valent cobalt (III)/(IV)-bpy complex immobilized on silica nanoparticles. ChemCatChem 11:5615–5624. https://doi.org/10.1002/cctc.201901391

    Article  CAS  Google Scholar 

  21. Wei D, Zhu X, Niu J, Song M (2016) High-valent-cobalt-catalyzed C-H functionalization based on concerted metalation-deprotonation and single-electron-transfer mechanisms. ChemCatChem 8:1242–1263. https://doi.org/10.1002/cctc.201600040

    Article  CAS  Google Scholar 

  22. Chen C, Shi S, Wang M, Ma H, Zhou L, Xu J (2014) Superhydrophobic SiO2-based nanocomposite modified with organic groups as catalyst for selective oxidation of ethylbenzene. J Mater Chem A 2:8126. https://doi.org/10.1039/c4ta00943f

    Article  CAS  Google Scholar 

  23. Liu M, Shi S, Zhao L, Wang M, Zhu G, Gao J, Xu J (2019) Wettability control of Co-SiO2 @Ti-Si core-shell catalyst to enhance the oxidation activity with the in situ generated hydroperoxide. ACS Appl Mater Interfaces 11:14702–14712. https://doi.org/10.1021/acsami.8b19704

    Article  CAS  PubMed  Google Scholar 

  24. Zhao L, Shi S, Liu M, Chen C, Zhu G, Gao J, Xu J (2020) Hydrophobic modification of microenvironment of highly dispersed Co3O4 nanoparticles for the catalytic selective oxidation of ethylbenzene. ChemCatChem 12:903–910. https://doi.org/10.1002/cctc.201901771

    Article  CAS  Google Scholar 

  25. Liu M, Shi S, Zhao L, Chen C, Gao J, Xu J (2019) Aliphatic amines modified CoO nanoparticles for catalytic oxidation of aromatic hydrocarbon with molecular oxygen, Chinese. J Catal 40:1488–1493. https://doi.org/10.1016/S1872-2067(19)63413-3

    Article  CAS  Google Scholar 

  26. Zhou L, Xu J, Miao H, Wang F, Li X (2005) Catalytic oxidation of cyclohexane to cyclohexanol and cyclohexanone over Co3O4 nanocrystals with molecular oxygen. Appl Catal A-Gen 292:223–228. https://doi.org/10.1016/j.apcata.2005.06.018

    Article  CAS  Google Scholar 

  27. Li X, Zhou L, Gao J, Miao H, Zhang H, Xu J (2009) Synthesis of Mn3O4 nanoparticles and their catalytic applications in hydrocarbon oxidation. Powder Technol 190:324–326. https://doi.org/10.1016/j.powtec.2008.08.010

    Article  CAS  Google Scholar 

  28. Yang Y, Qiu Z, Weng G, Wang H, Li Y, Fan B, Bai X, Zhang Q, Chen C (2022) Synthesis of amphiphilic silica with high exposure of surface groups and its utilization in efficient removal of organic dyes from aqueous solution. Adv Funct Mater 32:2106828. https://doi.org/10.1002/adfm.202106828

    Article  CAS  Google Scholar 

  29. Lyu Z, Wang H, Ye Y, Zhu Z, Weng G, He D, Li F, Li Y, Chen C (2023) Efficient removal of acetaldehyde from ethanol by template-free synthesized mesoporous SiO2-based solid acid catalyst with high surface silicon exposure. Chem Eng J 454:140472. https://doi.org/10.1016/j.cej.2022.140472

    Article  CAS  Google Scholar 

  30. Zhu Z, Zhang Q, Xie D, Liu H, Wang H, Shi L, Chen C (2022) Photo- and solvent-mediated production of the highly reactive N-oxyl radical and its efficient catalytic oxidation of hydrocarbons at ambient temperature. ACS Sustain Chem Eng 10:13765–13774. https://doi.org/10.1021/acssuschemeng.2c03985

    Article  CAS  Google Scholar 

  31. Xing Y, Du X, Li X, Huang H, Li J, Wen Y, Zhang X (2018) Tunable dendrimer-like porous silica nanospheres: effects of structures and stacking manners on surface wettability. J Alloys Compd 732:70–79. https://doi.org/10.1016/j.jallcom.2017.10.190

    Article  CAS  Google Scholar 

  32. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  33. Sun G-D, Zhang G-H, Chou K-C, Dong A-P (2017) Preparation of SiS and SiO2 nanospheres. Ind Eng Chem Res 56:12362–12368. https://doi.org/10.1021/acs.iecr.7b03292

    Article  CAS  Google Scholar 

  34. Tillman L, Voskanyan A, Navrotsky A (2023) Synthesis of mesoporous silica using a mineral silica source. J Am Ceram Soc 106:1993–1999. https://doi.org/10.1111/jace.18867

    Article  CAS  Google Scholar 

  35. Ye Y, Zhang Q, Weng G, Zhu Z, Lyu Z, Chen C (2023) NH2-SiO2-C3H7 with abundant surface groups exposure as the efficient catalyst for the Aldol condensation reaction. Appl Surf Sci 607:154942. https://doi.org/10.1016/j.apsusc.2022.154942

    Article  CAS  Google Scholar 

  36. Comba P, Löhr A, Pfaff F, Ray K (2020) Redox potentials of high-valent iron-, cobalt-, and nickel-oxido complexes: evidence for exchange enhanced reactivity. Isr J Chem 60:957–962. https://doi.org/10.1002/ijch.202000038

    Article  CAS  Google Scholar 

  37. Bochkova O, Khrizanforov M, Gubaidullin A, Gerasimova T, Nizameev I, Kholin K, Laskin A, Budnikova Y, Sinyashin O, Mustafina A (2020) Synthetic tuning of CoII-doped silica nanoarchitecture towards electrochemical sensing ability. Nanomaterials 10:1338. https://doi.org/10.3390/nano10071338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Katsoulidis AP, Petrakis DE, Armatas GS, Trikalitis PN, Pomonis PJ (2006) Ordered mesoporous CoO/MCM-41 materials exhibiting long-range self-organized nanostructured morphology. Microporous Mesoporous Mater 92:71–80. https://doi.org/10.1016/j.micromeso.2006.01.001

    Article  CAS  Google Scholar 

  39. Ghadamyari Z, Khojastehnezhad A, Seyedi SM, Shiri A (2019) Co (II)-porphyrin immobilized on graphene oxide: an efficient catalyst for the beckmann rearrangement. Chem Select 4:10920–10927. https://doi.org/10.1002/slct.201902811

    Article  CAS  Google Scholar 

  40. Ji D, Xi N, Li G, Dong P, Li H, Li H, Li C, Wang P, Zhao Y (2021) Hydrotalcite-based CoxNiyAl1Ox mixed oxide as a highly efficient catalyst for selective ethylbenzene oxidation. Mol Catal 508:111579. https://doi.org/10.1016/j.mcat.2021.111579

    Article  CAS  Google Scholar 

  41. Qiu P, Chen H, Jiang F (2014) Cobalt modified mesoporous graphitic carbon nitride with enhanced visible-light photocatalytic activity. RSC Adv 4:39969–39977. https://doi.org/10.1039/C4RA06451H

    Article  CAS  Google Scholar 

  42. Ma L, Chen S, Long C, Li X, Zhao Y, Liu Z, Huang Z, Dong B, Zapien JA, Zhi C (2019) Achieving high-voltage and high-capacity aqueous rechargeable zinc ion battery by incorporating two-species redox reaction. Adv Energy Mater 9:1902446. https://doi.org/10.1002/aenm.201902446

    Article  CAS  Google Scholar 

  43. Kim J, Yi S, Li L, Thu TV, Chun S (2022) Effect of valence state of cobalt in cobalt hexacyanoferrate coprecipitated at different temperatures on electrochemical behavior. Int J Energy Res 46:22717–22729. https://doi.org/10.1002/er.8574

    Article  CAS  Google Scholar 

  44. Garcia T, Agouram S, Sánchez-Royo JF, Murillo R, Mastral AM, Aranda A, Vázquez I, Dejoz A, Solsona B (2010) Deep oxidation of volatile organic compounds using ordered cobalt oxides prepared by a nanocasting route. Appl Catal A-Gen 386:16–27. https://doi.org/10.1016/j.apcata.2010.07.018

    Article  CAS  Google Scholar 

  45. Li X, Jiao Y, Cui Y, Dai C, Ren P, Song C, Ma X (2021) Synergistic catalysis of the synthesis of ammonia with co-based catalysts and plasma: from nanoparticles to a single atom. ACS Appl Mater Interfaces 13:52498–52507. https://doi.org/10.1021/acsami.1c12695

    Article  CAS  PubMed  Google Scholar 

  46. Lu K, Chai K, Liang Q, Xu Z, Li G, Ji H (2017) Biosorption and selective separation of acetophenone and 1-phenylethanol with polysaccharide-based polymers. Chem Eng J 317:862–872. https://doi.org/10.1016/j.cej.2017.02.118

    Article  CAS  Google Scholar 

  47. Rooney CL, Lyons M, Wu Y, Hu G, Wang M, Choi C, Gao Y, Chang C, Brudvig GW, Feng Z, Wang H (2023) Active sites of cobalt phthalocyanine in electrocatalytic CO2 reduction to methanol. Angew Chem Int Ed e202310623. https://doi.org/10.1002/anie.202310623

Download references

Acknowledgements

We gratefully acknowledge financial support of this work by the National Natural Science Foundation of China (21872075), the Natural Science Foundation of Ningbo (202003N4096), and K.C. Wang Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Contributions

Chen Lu: Conceptualization, Formal analysis, Investigation, Data curation, Writing-original draft. Chen Chen & Hongying Lü: Conceptualization, Writing-review & editing, Funding acquisition, Supervision, Project administration. Qiaohong Zhang: Method & English polish. KeFan Yu: Investigation & Formal analysis.

Corresponding authors

Correspondence to Chen Chen or Hongying Lü.

Ethics declarations

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, C., Zhang, Q., Chen, C. et al. Selective Oxidation of Alkyl Hydrocarbon with Molecular Oxygen Catalyzed by Surface-Amine-Modified Cobalt-Silicon Mixed Nano Oxides. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04687-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04687-x

Keywords

Navigation